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Preface

The beauty of plants has attracted the attention of mathematicians for Mathematics
and beautycenturies. Conspicuous geometric features such as the bilateral sym-

metry of leaves, the rotational symmetry of flowers, and the helical
arrangements of scales in pine cones have been studied most exten-
sively. This focus is reflected in a quotation from Weyl [159, page 3],
“Beauty is bound up with symmetry.”

This book explores two other factors that organize plant structures
and therefore contribute to their beauty. The first is the elegance and
relative simplicity of developmental algorithms, that is, the rules which
describe plant development in time. The second is self-similarity, char-
acterized by Mandelbrot [95, page 34] as follows:

When each piece of a shape is geometrically similar to the
whole, both the shape and the cascade that generate it are
called self-similar.

This corresponds with the biological phenomenon described by Herman,
Lindenmayer and Rozenberg [61]:

In many growth processes of living organisms, especially of
plants, regularly repeated appearances of certain multicel-
lular structures are readily noticeable.... In the case of a
compound leaf, for instance, some of the lobes (or leaflets),
which are parts of a leaf at an advanced stage, have the
same shape as the whole leaf has at an earlier stage.

Thus, self-similarity in plants is a result of developmental processes. Growth and
formBy emphasizing the relationship between growth and form, this book

follows a long tradition in biology. D’Arcy Thompson [143] traces its
origins to the late seventeenth century, and comments:

Organic form itself is found, mathematically speaking, to be
a function of time.... We might call the form of an organism
an event in space-time, and not merely a configuration in
space.

This concept is echoed by Hallé, Oldeman and Tomlinson [58]:

The idea of the form implicitly contains also the history of
such a form.



vi Preface

The developmental processes are captured using the formalism of
L-systems. They were introduced in 1968 by Lindenmayer [82] as aModeling of

plants theoretical framework for studying the development of simple multicel-
lular organisms, and subsequently applied to investigate higher plants
and plant organs. After the incorporation of geometric features, plant
models expressed using L-systems became detailed enough to allow the
use of computer graphics for realistic visualization of plant structures
and developmental processes.

The emphasis on graphics has several motivations. A visual compar-
ison of models with real structures is an important component of model
validation. The display of parameters and processes not observable di-
rectly in living organisms may assist in the analysis of their physiology,
and thus present a valuable tool for educational purposes. From an
aesthetic perspective, plants present a wealth of magnificent objects
for image synthesis. The quest for photorealism challenges modeling
and rendering algorithms, while a departure from realism may offer a
fresh view of known structures.

The application of computer graphics to biological structures is only
one of many factors that contribute to the interdisciplinary character
of this book. For example, the notion of L-systems is a part of formal
language theory, rooted in the theory of algorithms. The application of
L-systems to plant description has been studied by biologists, and in-
volves various methods of general mathematics. Self-similarity relates
plant structures to the geometry of fractals. Computer-aided visual-
ization of these structures, and the processes that create them, joins
science with art.

The study of an area that combines so many disciplines is very stim-About the book
ulating. Some results may be of special interest to students of biology
or computer graphics, but a much wider circle of readers, generally in-
terested in science, may find mathematical plant models inspiring, and
the open problems worth further thought. Consequently, all basic con-
cepts are presented in a self-contained manner, assuming only general
knowledge of mathematics at the junior college level.

This book focuses on original research results obtained by the au-
thors in the scope of the cooperation between the Theoretical Biology
Group, directed by Aristid Lindenmayer at the University of Utrecht,
and the Computer Graphics Group, working under the supervision of
Przemyslaw Prusinkiewicz at the University of Regina. Technically, the
book evolved from the SIGGRAPH ’88 and ’89 course notes Linden-
mayer systems, fractals, and plants, published by Springer-Verlag in
the series Lecture Notes in Biomathematics [112]. The present volume
has been extended with edited versions of recent journal and conference
papers (see Sources), as well as previously unpublished results.

Aristid Lindenmayer is the author of the notion of L-systems which
forms the main thread of the book. He also played an essential role
in the reported research by suggesting topics for study, guiding the
construction of specific plant models, monitoring their correctness and
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participating in many discussions of biological and mathematical prob-
lems. Seriously ill, Professor Lindenmayer co-authored and edited sev-
eral chapters, but was not able to participate in the completion of this
work. If any inaccuracies or mistakes remain, he could not prevent
them. Still, in spite of unavoidable shortcomings, we hope that this
book will convey his and our excitement of applying mathematics to
explore the beauty of plants.
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Chapter 1

Graphical modeling using
L-systems

Lindenmayer systems — or L-systems for short — were conceived as
a mathematical theory of plant development [82]. Originally, they did
not include enough detail to allow for comprehensive modeling of higher
plants. The emphasis was on plant topology, that is, the neighborhood
relations between cells or larger plant modules. Their geometric aspects
were beyond the scope of the theory. Subsequently, several geometric
interpretations of L-systems were proposed with a view to turning them
into a versatile tool for plant modeling. Throughout this book, an
interpretation based on turtle geometry is used [109]. Basic notions
related to L-system theory and their turtle interpretation are presented
below.

1.1 Rewriting systems

The central concept of L-systems is that of rewriting. In general, rewrit-
ing is a technique for defining complex objects by successively replacing
parts of a simple initial object using a set of rewriting rules or produc-
tions . The classic example of a graphical object defined in terms of
rewriting rules is the snowflake curve (Figure 1.1), proposed in 1905 by Koch

constructionvon Koch [155]. Mandelbrot [95, page 39] restates this construction as
follows:

One begins with two shapes , an initiator and a generator.
The latter is an oriented broken line made up of N equal
sides of length r. Thus each stage of the construction begins
with a broken line and consists in replacing each straight
interval with a copy of the generator, reduced and displaced
so as to have the same end points as those of the interval
being replaced.
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initiator

generator

Figure 1.1: Construction of the snowflake curve

While the Koch construction recursively replaces open polygons, rewrit-
ing systems that operate on other objects have also been investigated.
For example, Wolfram [160, 161] studied patterns generated by rewrit-
ing elements of rectangular arrays. A similar array-rewriting mecha-
nism is the cornerstone of Conway’s popular game of life [49, 50]. An
important body of research has been devoted to various graph-rewriting
systems [14, 33, 34].

The most extensively studied and the best understood rewriting sys-Grammars
tems operate on character strings. The first formal definition of such a
system was given at the beginning of this century by Thue [128], but
a wide interest in string rewriting was spawned in the late 1950s by
Chomsky’s work on formal grammars [13]. He applied the concept of
rewriting to describe the syntactic features of natural languages. A
few years later Backus and Naur introduced a rewriting-based notation
in order to provide a formal definition of the programming language
ALGOL-60 [5, 103]. The equivalence of the Backus-Naur form (BNF)
and the context-free class of Chomsky grammars was soon recognized
[52], and a period of fascination with syntax, grammars and their appli-
cation to computer science began. At the center of attention were sets
of strings — called formal languages — and the methods for generating,
recognizing and transforming them.

In 1968 a biologist, Aristid Lindenmayer, introduced a new type ofL-systems
string-rewriting mechanism, subsequently termed L-systems [82]. The
essential difference between Chomsky grammars and L-systems lies in
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Figure 1.2: Relations between Chomsky classes of languages and language
classes generated by L-systems. The symbols OL and IL denote language
classes generated by context-free and context-sensitive L-systems, respec-
tively.

the method of applying productions. In Chomsky grammars produc-
tions are applied sequentially, whereas in L-systems they are applied
in parallel and simultaneously replace all letters in a given word. This
difference reflects the biological motivation of L-systems. Productions
are intended to capture cell divisions in multicellular organisms, where
many divisions may occur at the same time. Parallel production ap-
plication has an essential impact on the formal properties of rewriting
systems. For example, there are languages which can be generated
by context-free L-systems (called OL-systems) but not by context-free
Chomsky grammars [62, 128] (Figure 1.2).

1.2 DOL-systems

This section presents the simplest class of L-systems, those which are
deterministic and context-free, called DOL-systems. The discussion
starts with an example that introduces the main idea in intuitive terms.

Consider strings (words) built of two letters a and b, which may Example
occur many times in a string. Each letter is associated with a rewriting
rule. The rule a → ab means that the letter a is to be replaced by
the string ab, and the rule b → a means that the letter b is to be
replaced by a. The rewriting process starts from a distinguished string
called the axiom. Assume that it consists of a single letter b. In the
first derivation step (the first step of rewriting) the axiom b is replaced
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Figure 1.3: Example of a derivation in a DOL-system

by a using production b → a. In the second step a is replaced by ab
using production a → ab. The word ab consists of two letters, both of
which are simultaneously replaced in the next derivation step. Thus, a
is replaced by ab, b is replaced by a, and the string aba results. In a
similar way, the string aba yields abaab which in turn yields abaababa,
then abaababaabaab, and so on (Figure 1.3).

Formal definitions describing DOL-systems and their operation are
given below. For more details see [62, 127].

Let V denote an alphabet, V ∗ the set of all words over V , andL-system
V + the set of all nonempty words over V . A string OL-system is an
ordered triplet G = 〈V, ω, P 〉 where V is the alphabet of the system,
ω ∈ V + is a nonempty word called the axiom and P ⊂ V × V ∗ is a
finite set of productions. A production (a, χ) ∈ P is written as a →
χ. The letter a and the word χ are called the predecessor and the
successor of this production, respectively. It is assumed that for any
letter a ∈ V , there is at least one word χ ∈ V ∗ such that a → χ. If
no production is explicitly specified for a given predecessor a ∈ V , the
identity production a → a is assumed to belong to the set of productions
P . An OL-system is deterministic (noted DOL-system) if and only if
for each a ∈ V there is exactly one χ ∈ V ∗ such that a → χ.

Let µ = a1 . . . am be an arbitrary word over V . The word ν =Derivation
χ1 . . . χm ∈ V ∗ is directly derived from (or generated by) µ, noted µ ⇒
ν, if and only if ai → χi for all i = 1, . . . ,m. A word ν is generated by
G in a derivation of length n if there exists a developmental sequence of
words µ0, µ1, . . . , µn such that µ0 = ω, µn = ν and µ0 ⇒ µ1 ⇒ . . . ⇒
µn.
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Figure 1.4: Development of a filament (Anabaena catenula) simulated using
a DOL-system

The following example provides another illustration of the operation of Anabaena
DOL-systems. The formalism is used to simulate the development of a
fragment of a multicellular filament such as that found in the blue-green
bacteria Anabaena catenula and various algae [25, 84, 99]. The symbols
a and b represent cytological states of the cells (their size and readiness
to divide). The subscripts l and r indicate cell polarity, specifying the
positions in which daughter cells of type a and b will be produced. The
development is described by the following L-system:

ω : ar

p1 : ar → albr

p2 : al → blar

p3 : br → ar

p4 : bl → al

(1.1)

Starting from a single cell ar (the axiom), the following sequence of
words is generated:

ar

albr

blarar

alalbralbr

blarblararblarar

· · ·
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Under a microscope, the filaments appear as a sequence of cylin-
ders of various lengths, with a-type cells longer than b-type cells. The
corresponding schematic image of filament development is shown in
Figure 1.4. Note that due to the discrete nature of L-systems, the con-
tinuous growth of cells between subdivisions is not captured by this
model.

1.3 Turtle interpretation of strings

The geometric interpretation of strings applied to generate schematic
images of Anabaena catenula is a very simple one. Letters of the
L-system alphabet are represented graphically as shorter or longer rect-
angles with rounded corners. The generated structures are one-dimen-
sional chains of rectangles, reflecting the sequence of symbols in the
corresponding strings.

In order to model higher plants, a more sophisticated graphical in-Previous
methods terpretation of L-systems is needed. The first results in this direction

were published in 1974 by Frijters and Lindenmayer [46], and Hogeweg
and Hesper [64]. In both cases, L-systems were used primarily to de-
termine the branching topology of the modeled plants. The geometric
aspects, such as the lengths of line segments and the angle values, were
added in a post-processing phase. The results of Hogeweg and Hesper
were subsequently extended by Smith [136, 137], who demonstrated the
potential of L-systems for realistic image synthesis.

Szilard and Quinton [141] proposed a different approach to L-system
interpretation in 1979. They concentrated on image representations
with rigorously defined geometry, such as chain coding [43], and showed
that strikingly simple DOL-systems could generate the intriguing, con-
voluted curves known today as fractals [95]. These results were sub-
sequently extended in several directions. Siromoney and Subrama-
nian [135] specified L-systems which generate classic space-filling curves.
Dekking investigated the limit properties of curves generated by L-
systems [32] and concentrated on the problem of determining the fractal
(Hausdorff) dimension of the limit set [31]. Prusinkiewicz focused on
an interpretation based on a LOGO-style turtle [1] and presented more
examples of fractals and plant-like structures modeled using L-systems
[109, 111]. Further applications of L-systems with turtle interpretation
include realistic modeling of herbaceous plants [117], description of ko-
lam patterns (an art form from Southern India) [112, 115, 133, 134],
synthesis of musical scores [110] and automatic generation of space-
filling curves [116].

The basic idea of turtle interpretation is given below. A state of theTurtle
turtle is defined as a triplet (x, y, α), where the Cartesian coordinates
(x, y) represent the turtle’s position, and the angle α, called the heading,
is interpreted as the direction in which the turtle is facing. Given
the step size d and the angle increment δ, the turtle can respond to
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Figure 1.5: (a) Turtle interpretation of string symbols F , +, −. (b) Inter-
pretation of a string. The angle increment δ is equal to 90◦. Initially the
turtle faces up.

commands represented by the following symbols (Figure 1.5a):

F Move forward a step of length d. The state of the turtle
changes to (x′, y′, α), where x′ = x + d cos α and y′ =
y + d sin α. A line segment between points (x, y) and
(x′, y′) is drawn.

f Move forward a step of length d without drawing a line.

+ Turn left by angle δ. The next state of the turtle is
(x, y, α+δ). The positive orientation of angles is counter-
clockwise.

− Turn right by angle δ. The next state of the turtle is
(x, y, α − δ).

Given a string ν, the initial state of the turtle (x0, y0, α0) and fixed Interpretation
parameters d and δ, the turtle interpretation of ν is the figure (set of
lines) drawn by the turtle in response to the string ν (Figure 1.5b).
Specifically, this method can be applied to interpret strings which are
generated by L-systems. For example, Figure 1.6 presents four approxi-
mations of the quadratic Koch island taken from Mandelbrot’s book [95,
page 51]. These figures were obtained by interpreting strings generated
by the following L-system:

ω : F − F − F − F
p : F → F − F + F + FF − F − F + F

The images correspond to the strings obtained in derivations of length
0 to 3. The angle increment δ is equal to 90◦. The step length d is
decreased four times between subsequent images, making the distance
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Figure 1.6: Generating a quadratic Koch island

between the endpoints of the successor polygon equal to the length of
the predecessor segment.

The above example reveals a close relationship between Koch con- Koch
constructions
vs. L-systems

structions and L-systems. The initiator corresponds to the axiom and
the generator corresponds to the production successor. The predeces-
sor F represents a single edge. L-systems specified in this way can be
perceived as codings for Koch constructions. Figure 1.7 presents further
examples of Koch curves generated using L-systems. A slight compli-
cation occurs if the curve is not connected; a second production (with
the predecessor f) is then required to keep components the proper dis-
tance from each other (Figure 1.8). The ease of modifying L-systems
makes them suitable for developing new Koch curves. For example, one
can start from a particular L-system and observe the results of insert-
ing, deleting or replacing some symbols. A variety of curves obtained
this way are shown in Figure 1.9.
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Figure 1.7: Examples of Koch curves generated using L-systems: (a)
Quadratic Koch island [95, page 52], (b) A quadratic modification of the
snowflake curve [95, page 139]

  

 

Figure 1.8: Combination of islands and lakes [95, page 121]
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Figure 1.9: A sequence of Koch curves obtained by successive modification
of the production successor
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a n=10, δ=90◦
Fl
Fl→Fl+Fr+
Fr→-Fl-Fr

b n=6, δ=60◦
Fr
Fl→Fr+Fl+Fr
Fr→Fl-Fr-Fl

Figure 1.10: Examples of curves generated by edge-rewriting L-systems: (a)
the dragon curve [48], (b) the Sierpiński gasket [132]

1.4 Synthesis of DOL-systems

Random modification of productions gives little insight into the rela-
tionship between L-systems and the figures they generate. However,
we often wish to construct an L-system which captures a given struc-
ture or sequence of structures representing a developmental process.
This is called the inference problem in the theory of L-systems. Al-
though some algorithms for solving it were reported in the literature
[79, 88, 89], they are still too limited to be of practical value in the
modeling of higher plants. Consequently, the methods introduced be-
low are more intuitive in nature. They exploit two modes of operation
for L-systems with turtle interpretation, called edge rewriting and node
rewriting using terminology borrowed from graph grammars [56, 57, 87].
In the case of edge rewriting, productions substitute figures for poly-
gon edges, while in node rewriting, productions operate on polygon
vertices. Both approaches rely on capturing the recursive structure of
figures and relating it to a tiling of a plane. Although the concepts are
illustrated using abstract curves, they apply to branching structures
found in plants as well.

1.4.1 Edge rewriting

Edge rewriting can be viewed as an extension of Koch constructions.
For example, Figure 1.10a shows the dragon curve [21, 48, 95] and the
L-system that generated it. Both the Fl and Fr symbols represent
edges created by the turtle executing the “move forward” command.
The productions substitute Fl or Fr edges by pairs of lines forming
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a
n=4, δ=60◦
Fl
Fl→Fl+Fr++Fr-Fl--FlFl-Fr+
Fr→-Fl+FrFr++Fr+Fl--Fl-Fr

b
n=2, δ=90◦
-Fr
Fl→FlFl-Fr-Fr+Fl+Fl-Fr-FrFl+

Fr+FlFlFr-Fl+Fr+FlFl+
Fr-FlFr-Fr-Fl+Fl+FrFr-

Fr→+FlFl-Fr-Fr+Fl+FlFr+Fl-
FrFr-Fl-Fr+FlFrFr-Fl-
FrFl+Fl+Fr-Fr-Fl+Fl+FrFr

Figure 1.11: Examples of FASS curves generated by edge-rewriting L-
systems: (a) hexagonal Gosper curve [51], (b) quadratic Gosper curve [32]
or E-curve [96]

left or right turns. Many interesting curves can be obtained assuming
two types of edges, “left” and “right.” Figures 1.10b and 1.11 present
additional examples.

The curves included in Figure 1.11 belong to the class of FASSFASS curve
construction curves (an acronym for space-filling, self-avoiding, simple and self-

similar) [116], which can be thought of as finite, self-avoiding approxi-
mations of curves that pass through all points of a square (space-filling
curves [106]). McKenna [96] presented an algorithm for constructing
FASS curves using edge replacement. It exploits the relationship be-
tween such a curve and a recursive subdivision of a square into tiles.
For example, Figure 1.12 shows the tiling that corresponds to the E-
curve of Figure 1.11b. The polygon replacing an edge Fl (Figure 1.12a)
approximately fills the square on the left side of Fl (b). Similarly, the
polygon replacing an edge Fr (c) approximately fills the square on the
right side of that edge (d). Consequently, in the next derivation step,
each of the 25 tiles associated with the curves (b) or (d) will be covered
by their reduced copies (Figure 1.11b). A recursive application of this
argument indicates that the whole curve is approximately space-filling.
It is also self-avoiding due to the following two properties:
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Fl→FlFl+Fr+Fr-Fl-Fl+Fr+FrFl-Fr-FlFlFr+
Fl-Fr-FlFl-Fr+FlFr+Fr+Fl-Fl-FrFr+

Fr→-FlFl+Fr+Fr-Fl-FlFr-Fl+FrFr+Fl+Fr-
FlFrFr+Fl+FrFl-Fl-Fr+Fr+Fl-Fl-FrFr

Figure 1.12: Construction of the E-curve on the square grid. Left and right
edges are distinguished by the direction of ticks.

• the generating polygon is self-avoiding, and

• no matter what the relative orientation of the polygons lying on
two adjacent tiles, their union is a self-avoiding curve.

The first property is obvious, while the second can be verified by con-
sidering all possible relative positions of a pair of adjacent tiles.

Using a computer program to search the space of generating poly-
gons, McKenna found that the E-curve is the simplest FASS curve
obtained by edge replacement in a square grid. Other curves require
generators with more edges (Figure 1.13). The relationship between
edge rewriting and tiling of the plane extends to branching structures,
providing a method for constructing and analyzing L-systems which
operate according to the edge-rewriting paradigm (see Section 1.10.3).

1.4.2 Node rewriting

The idea of node rewriting is to substitute new polygons for nodes of the Subfigures
predecessor curve. In order to make this possible, turtle interpretation
is extended by symbols which represent arbitrary subfigures. As shown
in Figure 1.14, each subfigure A from a set of subfigures A is represented
by:

• two contact points, called the entry point PA and the exit point
QA, and

• two direction vectors, called the entry vector �pA and the exit vector
�qA.

During turtle interpretation of a string ν, a symbol A ∈ A incorporates
the corresponding subfigure into a picture. To this end, A is translated
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Figure 1.13: Examples of FASS curves generated on the square grid using
edge replacement: (a) a SquaRecurve (grid size 7 × 7), (b) an E-tour (grid
size 9 × 9). Both curves are from [96].

Figure 1.14: Description of a subfigure A
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Ln RnLn+1 Rn+1

Ln+2 Rn+2

Figure 1.15: Recursive construction of the Hilbert curve [63] in terms of
node replacement

and rotated in order to align its entry point PA and direction �pA with
the current position and orientation of the turtle. Having placed A, the
turtle is assigned the resulting exit position QA and direction �qA.

For example, assuming that the contact points and directions of Recursive
formulassubfigures Ln and Rn are as in Figure 1.15, the figures Ln+1 and Rn+1

are captured by the following formulas:

Ln+1 = +RnF − LnFLn − FRn+
Rn+1 = −LnF + RnFRn + FLn−

Suppose that curves L0 and R0 are given. One way of evaluating the
string Ln (or Rn) for n > 0 is to generate successive strings recur-
sively, in the order of decreasing value of index n. For example, the
computation of L2 would proceed as follows:

L2 = +R1F − L1FL1 − FR1+
= +(−L0F + R0FR0 + FL0−)F − (+R0F − L0FL0 − FR0+)

F (+R0F − L0FL0 − FR0+) − F (−L0F + R0FR0 + FL0−)+
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Thus, the generation of string Ln can be considered as a string-rewriting
mechanism, where the symbols on the left side of the recursive formulas
are substituted by corresponding strings on the right side. The substi-
tution proceeds in a parallel way with F, + and − replacing themselves.
Since all indices in any given string have the same value, they can be
dropped, provided that a global count of derivation steps is kept. Con-
sequently, string Ln can be obtained in a derivation of length n using
the following L-system:

ω : L
p1 : L → +RF − LFL − FR+
p2 : R → −LF + RFR + FL−

In order to complete the curve definition, it is necessary to specify
the subfigures represented by symbols L and R. In the special case ofPure curves
pure curves [116], these subfigures are reduced to single points. Thus,
one can assume that symbols L and R are erased (replaced by the empty
string) at the end of the derivation. Alternatively, they can be left in
the string and ignored by the turtle during string interpretation. This
second approach is consistent with previous definitions of turtle inter-
pretation [109, 112]. A general discussion of the relationship between
recurrent formulas and L-systems is presented in [61, 62].

Construction of the L-system generating the Hilbert curve can beFASS curve
construction extended to other FASS curves [116]. Consider an array of m×m square

tiles, each including a smaller square, called a frame. The edges of the
frame run at some distance from the tile’s edges. Each frame bounds an
open self-avoiding polygon. The endpoints of this polygon coincide with
the two contact vertices of the frame. Suppose that a single-stroke line
running through all tiles can be constructed by connecting the contact
vertices of neighboring frames using short horizontal or vertical line
segments. A FASS curve can be constructed by the recursive repetition
of this connecting pattern. To this end, the array of m × m connected
tiles is considered a macrotile which contains an open polygon inscribed
into a macroframe. An array of m × m macrotiles is formed, and the
polygons inscribed into the macroframes are connected together. This
construction is carried out recursively, with m × m macrotiles at level
n yielding one macrotile at level n + 1.

Tile arrangements suitable for the generation of FASS curves can
be found algorithmically, by searching the space of all possible arrange-
ments on a grid of a given size. Examples of curves synthesized this
way are given in Figures 1.16 and 1.17.

As in the case of edge rewriting, the relationship between node
rewriting and tilings of the plane extends to branching structures. It
offers a method for synthesizing L-systems that generate objects with a
given recursive structure, and links methods for plant generation based
on L-systems with those using iterated function systems [7] (see Chap-
ter 8).
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a
n=3,δ=90◦
-L
L→LF+RFR+FL-F-LFLFL-FRFR+
R→-LFLF+RFRFR+F+RF-LFL-FR

b
n=2, δ=90◦
-L
L→LFLF+RFR+FLFL-FRF-LFL-

FR+F+RF-LFL-FRFRFR+
R→-LFLFLF+RFR+FL-F-LF+RFR+

FLF+RFRF-LFL-FRFR

Figure 1.16: Sample FASS curves constructed using tiles with contact points
positioned along a tile edge: (a) 3 × 3 tiles form a macrotile, (b) 4 × 4 tiles
form a macrotile

a n=2, δ=90◦
L
L→LFRFL-F-RFLFR+F+LFRFL
R→RFLFR+F+LFRFL-F-RFLFR

b n=2, δ=45◦
L
L→L+F+R-F-L+F+R-F-L-F-R+F+L-F-R-F-L+F+R-F-L-F-R-F-

L+F+R+F+L+F+R-F-L+F+R+F+L-R-F+F+L+F+R-F-L+F+R-F-L
R→R-F-L+F+R-F-L+F+R+F+L-F-R+F+L+F+R-F-L+F+R+F+L+F+

R-F-L-F-R-F-L+F+R-F-L-F-R+F+L-F-R-F-L+F+R-F-L+F+R

Figure 1.17: Sample FASS curves constructed using tiles with contact points
positioned diagonally: (a) 3 × 3 tiles form a macrotile (Peano curve [106]),
(b) 5 × 5 tiles form a macrotile
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1.4.3 Relationship between edge and
node rewriting

The classes of curves that can be generated using the edge-rewriting and
node-rewriting techniques are not disjoint. For example, reconsider the
L-system that generates the dragon curve using edge replacement:

ω : Fl

p1 : Fl → Fl + Fr+
p2 : Fr → −Fl − Fr

Assume temporarily that a production predecessor can contain more
than one letter; thus an entire subword can be replaced by the successor
of a single production (a formalization of this concept is termed pseudo-
L-systems [109]). The dragon-generating L-system can be rewritten as:

ω : Fl
p1 : Fl → Fl + rF+
p2 : rF → −Fl − rF

where the symbols l and r are not interpreted by the turtle. Production
p1 replaces the letter l by the string l + rF− while the leading letter F
is left intact. In a similar way, production p2 replaces the letter r by
the string −Fl−r and leaves the trailing F intact. Thus, the L-system
can be transformed into node-rewriting form as follows:

ω : Fl
p1 : l → l + rF+
p2 : r → −Fl − r

In practice, the choice between edge rewriting and node rewriting
is often a matter of convenience. Neither approach offers an auto-
matic, general method for constructing L-systems that capture given
structures. However, the distinction between edge and node rewriting
makes it easier to understand the intricacies of L-system operation, and
in this sense assists in the modeling task. Specifically, the problem of
filling a region by a self-avoiding curve is biologically relevant, since
some plant structures, such as leaves, may tend to fill a plane without
overlapping [38, 66, 67, 94].

1.5 Modeling in three dimensions

Turtle interpretation of L-systems can be extended to three dimensions
following the ideas of Abelson and diSessa [1]. The key concept is to
represent the current orientation of the turtle in space by three vectors
�H,�L, �U, indicating the turtle’s heading, the direction to the left, and the
direction up. These vectors have unit length, are perpendicular to each
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Figure 1.18: Controlling the turtle in three dimensions

other, and satisfy the equation �H × �L = �U. Rotations of the turtle are
then expressed by the equation

[
�H ′ �L′ �U ′

]
=

[
�H �L �U

]
R,

where R is a 3× 3 rotation matrix [40]. Specifically, rotations by angle
α about vectors �U,�L and �H are represented by the matrices:

RU(α) =


 cos α sin α 0
− sin α cos α 0

0 0 1




RL(α) =


 cos α 0 − sin α

0 1 0
sin α 0 cos α




RH(α) =


 1 0 0

0 cos α − sin α
0 sin α cos α




The following symbols control turtle orientation in space (Figure 1.18):

+ Turn left by angle δ, using rotation matrix RU(δ).

− Turn right by angle δ, using rotation matrix RU(−δ).

& Pitch down by angle δ, using rotation matrix RL(δ).

∧ Pitch up by angle δ, using rotation matrix RL(−δ).

\ Roll left by angle δ, using rotation matrix RH(δ).

/ Roll right by angle δ, using rotation matrix RH(−δ).

| Turn around, using rotation matrix RU(180◦).
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n=2, δ=90◦
A
A → B-F+CFC+F-D&F∧D-F+&&CFC+F+B//
B → A&F∧CFB∧F∧D∧∧-F-D∧|F∧B|FC∧F∧A//
C → |D∧|F∧B-F+C∧F∧A&&FA&F∧C+F+B∧F∧D//
D → |CFB-F+B|FA&F∧A&&FB-F+B|FC//

Figure 1.19: A three-dimensional extension of the Hilbert curve [139]. Col-
ors represent three-dimensional “frames” associated with symbols A (red), B
(blue), C (green) and D (yellow).
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As an example of a three-dimensional object created using an L-
system, consider the extension of the Hilbert curve shown in Figure 1.19.
The L-system was constructed with the node-replacement technique
discussed in the previous section, using cubes and “macrocubes” in-
stead of tiles and macrotiles.

1.6 Branching structures

According to the rules presented so far, the turtle interprets a character
string as a sequence of line segments. Depending on the segment lengths
and the angles between them, the resulting line is self-intersecting or
not, can be more or less convoluted, and may have some segments
drawn many times and others made invisible, but it always remains
just a single line. However, the plant kingdom is dominated by branch-
ing structures; thus a mathematical description of tree-like shapes and
methods for generating them are needed for modeling purposes. An
axial tree [89, 117] complements the graph-theoretic notion of a rooted
tree [108] with the botanically motivated notion of branch axis.

1.6.1 Axial trees

A rooted tree has edges that are labeled and directed. The edge se-
quences form paths from a distinguished node, called the root or base,
to the terminal nodes . In the biological context, these edges are re-
ferred to as branch segments . A segment followed by at least one more
segment in some path is called an internode. A terminal segment (with
no succeeding edges) is called an apex.

An axial tree is a special type of rooted tree (Figure 1.20). At each
of its nodes, at most one outgoing straight segment is distinguished.
All remaining edges are called lateral or side segments. A sequence of
segments is called an axis if:

• the first segment in the sequence originates at the root of the tree
or as a lateral segment at some node,

• each subsequent segment is a straight segment, and

• the last segment is not followed by any straight segment in the
tree.

Together with all its descendants, an axis constitutes a branch. A
branch is itself an axial (sub)tree.

Axes and branches are ordered. The axis originating at the root of
the entire plant has order zero. An axis originating as a lateral segment
of an n-order parent axis has order n+1. The order of a branch is equal
to the order of its lowest-order or main axis.
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Figure 1.20: An axial tree

Figure 1.21: Sample tree generated using a method based on Horton–
Strahler analysis of branching patterns
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Figure 1.22: A tree production p and its application to the edge S in a tree
T1

Axial trees are purely topological objects. The geometric connotation
of such terms as straight segment, lateral segment and axis should be
viewed at this point as an intuitive link between the graph-theoretic
formalism and real plant structures.

The proposed scheme for ordering branches in axial trees was in-
troduced originally by Gravelius [53]. MacDonald [94, pages 110–121]
surveys this and other methods applicable to biological and geograph-
ical data such as stream networks. Of special interest are methods
proposed by Horton [70, 71] and Strahler, which served as a basis for
synthesizing botanical trees [37, 152] (Figure 1.21).

1.6.2 Tree OL-systems

In order to model development of branching structures, a rewriting
mechanism can be used that operates directly on axial trees. A rewrit-
ing rule, or tree production, replaces a predecessor edge by a successor
axial tree in such a way that the starting node of the predecessor is
identified with the successor’s base and the ending node is identified
with the successor’s top (Figure 1.22).

A tree OL-system G is specified by three components: a set of edge
labels V , an initial tree ω with labels from V , and a set of tree produc-
tions P . Given the L-system G, an axial tree T2 is directly derived from
a tree T1, noted T1 ⇒ T2, if T2 is obtained from T1 by simultaneously
replacing each edge in T1 by its successor according to the production
set P . A tree T is generated by G in a derivation of length n if there
exists a sequence of trees T0, T1, . . . , Tn such that T0 = ω, Tn = T and
T0 ⇒ T1 ⇒ . . . ⇒ Tn.
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Figure 1.23: Bracketed string representation of an axial tree

1.6.3 Bracketed OL-systems

The definition of tree L-systems does not specify the data structure for
representing axial trees. One possibility is to use a list representation
with a tree topology. Alternatively, axial trees can be represented using
strings with brackets [82]. A similar distinction can be observed in Koch
constructions, which can be implemented either by rewriting edges and
polygons or their string representations. An extension of turtle in-
terpretation to strings with brackets and the operation of bracketed
L-systems [109, 111] are described below.

Two new symbols are introduced to delimit a branch. They are
interpreted by the turtle as follows:

[ Push the current state of the turtle onto a pushdownStack
operations stack. The information saved on the stack contains the

turtle’s position and orientation, and possibly other at-
tributes such as the color and width of lines being drawn.

] Pop a state from the stack and make it the current state
of the turtle. No line is drawn, although in general the
position of the turtle changes.

An example of an axial tree and its string representation are shown
in Figure 1.23.

Derivations in bracketed OL-systems proceed as in OL-systems with-2D structures
out brackets. The brackets replace themselves. Examples of two-
dimensional branching structures generated by bracketed OL-systems
are shown in Figure 1.24.

Figure 1.25 is an example of a three-dimensional bush-like structureBush-like
structure generated by a bracketed L-system. Production p1 creates three new

branches from an apex of the old branch. A branch consists of an
edge F forming the initial internode, a leaf L and an apex A (which
will subsequently create three new branches). Productions p2 and p3



1.6. Branching structures 25

a
n=5,δ=25.7◦
F
F→F[+F]F[-F]F

b
n=5,δ=20◦
F
F→F[+F]F[-F][F]

c
n=4,δ=22.5◦
F
F→FF-[-F+F+F]+

[+F-F-F]

d
n=7,δ=20◦
X
X→F[+X]F[-X]+X
F→FF

e
n=7,δ=25.7◦
X
X→F[+X][-X]FX
F→FF

f
n=5,δ=22.5◦
X
X→F-[[X]+X]+F[+FX]-X
F→FF

Figure 1.24: Examples of plant-like structures generated by bracketed OL-
systems. L-systems (a), (b) and (c) are edge-rewriting, while (d), (e) and
(f) are node-rewriting.
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n=7, δ=22.5◦

ω : A
p1 : A → [&FL!A]/////’[&FL!A]///////’[&FL!A]
p2 : F → S ///// F
p3 : S → F L
p4 : L → [’’’∧∧{-f+f+f-|-f+f+f}]

Figure 1.25: A three-dimensional bush-like structure

specify internode growth. In subsequent derivation steps the internode
gets longer and acquires new leaves. This violates a biological rule
of subapical growth (discussed in detail in Chapter 3), but produces
an acceptable visual effect in a still picture. Production p4 specifies
the leaf as a filled polygon with six edges. Its boundary is formed
from the edges f enclosed between the braces { and } (see Chapter 5
for further discussion). The symbols ! and ′ are used to decrement
the diameter of segments and increment the current index to the color
table, respectively.

Another example of a three-dimensional plant is shown in Fig-Plant
with flowers ure 1.26. The L-system can be described and analyzed in a way similar

to the previous one.
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n=5, δ=18◦

ω : plant
p1 : plant → internode + [ plant + flower] − − //

[ − − leaf ] internode [ + + leaf ] −
[ plant flower ] + + plant flower

p2 : internode → F seg [// & & leaf ] [// ∧ ∧ leaf ] F seg
p3 : seg → seg F seg
p4 : leaf → [’ { +f−ff−f+ | +f−ff−f } ]
p5 : flower → [ & & & pedicel ‘ / wedge //// wedge ////

wedge //// wedge //// wedge ]
p6 : pedicel → FF
p7 : wedge → [‘ ∧ F ] [ { & & & & −f+f | −f+f } ]

Figure 1.26: A plant generated by an L-system
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1.7 Stochastic L-systems

All plants generated by the same deterministic L-system are identical.
An attempt to combine them in the same picture would produce a
striking, artificial regularity. In order to prevent this effect, it is nec-
essary to introduce specimen-to-specimen variations that will preserve
the general aspects of a plant but will modify its details.

Variation can be achieved by randomizing the turtle interpretation,
the L-system, or both. Randomization of the interpretation alone has
a limited effect. While the geometric aspects of a plant — such as
the stem lengths and branching angles — are modified, the underly-
ing topology remains unchanged. In contrast, stochastic application
of productions may affect both the topology and the geometry of the
plant. The following definition is similar to that of Yokomori [162] and
Eichhorst and Savitch [35].

A stochastic OL-system is an ordered quadruplet Gπ = 〈V, ω, P, π〉.L-system
The alphabet V , the axiom ω and the set of productions P are defined
as in an OL-system (page 4). Function π : P → (0, 1], called the
probability distribution, maps the set of productions into the set of
production probabilities. It is assumed that for any letter a ∈ V , the
sum of probabilities of all productions with the predecessor a is equal
to 1.

We will call the derivation µ ⇒ ν a stochastic derivation in Gπ if forDerivation
each occurrence of the letter a in the word µ the probability of applying
production p with the predecessor a is equal to π(p). Thus, different
productions with the same predecessor can be applied to various occur-
rences of the same letter in one derivation step.

A simple example of a stochastic L-system is given below.Example

ω : F

p1 : F
.33→ F [+F ]F [−F ]F

p2 : F
.33→ F [+F ]F

p3 : F
.34→ F [−F ]F

The production probabilities are listed above the derivation symbol
→. Each production can be selected with approximately the same
probability of 1/3. Examples of branching structures generated by this
L-system with derivations of length 5 are shown in Figure 1.27. Note
that these structures look like different specimens of the same (albeit
fictitious) plant species.

A more complex example is shown in Figure 1.28. The field consistsFlower field
of four rows and four columns of plants. All plants are generated by a
stochastic modification of the L-system used to generate Figure 1.26.
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Figure 1.27: Stochastic branching structures

Figure 1.28: Flower field
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The essence of this modification is to replace the original production
p3 by the following three productions:

p′3 : seg
.33→ seg [ // & & leaf ] [// ∧∧ leaf ] F seg

p′′3 : seg
.33→ seg F seg

p′′′3 : seg
.34→ seg

Thus, in any step of the derivation, the stem segment seg may either
grow and produce new leaves (production p′3), grow without producing
new leaves (production p′′3), or not grow at all (production p′′′3 ). All three
events occur with approximately the same probability. The resulting
field appears to consist of various specimens of the same plant species.
If the same L-system was used again (with different seed values for the
random number generator), a variation of this image would be obtained.

1.8 Context-sensitive L-systems

Productions in OL-systems are context-free; i.e. applicable regardlessContext in
string
L-systems

of the context in which the predecessor appears. However, production
application may also depend on the predecessor’s context. This effect is
useful in simulating interactions between plant parts, due for example to
the flow of nutrients or hormones. Various context-sensitive extensions
of L-systems have been proposed and studied thoroughly in the past
[62, 90, 128]. 2L-systems use productions of the form al < a > ar → χ,
where the letter a (called the strict predecessor) can produce word χ if
and only if a is preceded by letter al and followed by ar. Thus, letters
al and ar form the left and the right context of a in this production.
Productions in 1L-systems have one-sided context only; consequently,
they are either of the form al < a → χ or a > ar → χ. OL-systems,
1L-systems and 2L-systems belong to a wider class of IL-systems, also
called (k,l)-systems. In a (k,l)-system, the left context is a word of
length k and the right context is a word of length l.

In order to keep specifications of L-systems short, the usual notion
of IL-systems has been modified here by allowing productions with
different context lengths to coexist within a single system. Further-
more, context-sensitive productions are assumed to have precedence
over context-free productions with the same strict predecessor. Conse-
quently, if a context-free and a context-sensitive production both apply
to a given letter, the context-sensitive one should be selected. If no pro-
duction applies, this letter is replaced by itself as previously assumed
for OL-systems.
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Figure 1.29: The predecessor of a context-sensitive tree production (a)
matches edge S in a tree T (b)

The following sample 1L-system makes use of context to simulate signal Signal
propagationpropagation throughout a string of symbols:

ω : baaaaaaaa
p1 : b < a → b
p2 : b → a

The first few words generated by this L-system are given below:

baaaaaaaa
abaaaaaaa
aabaaaaaa
aaabaaaaa
aaaabaaaa
· · ·

The letter b moves from the left side to the right side of the string.
A context-sensitive extension of tree L-systems requires neighbor Context in tree

L-systemsedges of the replaced edge to be tested for context matching. A prede-
cessor of a context-sensitive production p consists of three components:
a path l forming the left context, an edge S called the strict predecessor,
and an axial tree r constituting the right context (Figure 1.29). The
asymmetry between the left context and the right context reflects the
fact that there is only one path from the root of a tree to a given edge,
while there can be many paths from this edge to various terminal nodes.
Production p matches a given occurrence of the edge S in a tree T if l
is a path in T terminating at the starting node of S, and r is a subtree
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of T originating at the ending node of S. The production can then be
applied by replacing S with the axial tree specified as the production
successor.

The introduction of context to bracketed L-systems is more difficultContext in
bracketed
L-systems

than in L-systems without brackets, because the bracketed string repre-
sentation of axial trees does not preserve segment neighborhood. Conse-
quently, the context matching procedure may need to skip over symbols
representing branches or branch portions. For example, Figure 1.29 in-
dicates that a production with the predecessor BC < S > G[H]M can
be applied to symbol S in the string

ABC[DE][SG[HI[JK]L]MNO],

which involves skipping over symbols [DE] in the search for left context,
and I[JK]L in the search for right context.

Within the formalism of bracketed L-systems, the left context can
be used to simulate control signals that propagate acropetally, i.e., from
the root or basal leaves towards the apices of the modeled plant, while
the right context represents signals that propagate basipetally, i.e., from
the apices towards the root. For example, the following 1L-system
simulates propagation of an acropetal signal in a branching structure
that does not grow:

#ignore : +−

ω : Fb[+Fa]Fa[−Fa]Fa[+Fa]Fa

p1 : Fb < Fa → Fb

Symbol Fb represents a segment already reached by the signal, while
Fa represents a segment that has not yet been reached. The #ignore
statement indicates that the geometric symbols + and − should be
considered as non-existent while context matching. Images representing
consecutive stages of signal propagation (corresponding to consecutive
words generated by the L-system under consideration) are shown in
Figure 1.30a.

The propagation of a basipetal signal can be simulated in a similar
way (Figure 1.30b):

#ignore : +−

ω : Fa[+Fa]Fa[−Fa]Fa[+Fa]Fb

p1 : Fa > Fb → Fb
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Figure 1.30: Signal propagation in a branching structure: (a) acropetal, (b)
basipetal

The operation of context-sensitive L-systems is examined further using L-systems of
Hogeweg,
Hesper and
Smith

examples obtained by Hogeweg and Hesper [64]. In 1974, they pub-
lished the results of an exhaustive study of 3,584 patterns generated
by a class of bracketed 2L-systems defined over the alphabet {0,1}.
Some of these patterns had plant-like shapes. Subsequently, Smith
significantly improved the quality of the generated images using state-
of-the-art computer imagery techniques [136, 137]. Sample structures
generated by L-systems similar to those proposed by Hogeweg and Hes-
per are shown in Figure 1.31. The differences are related to the geo-
metric interpretation of the resulting strings. According to the original
interpretation, consecutive branches are issued alternately to the left
and right, whereas turtle interpretation requires explicit specification
of branching angles within the L-system.
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Figure 1.31: Examples of branching structures generated using L-systems
based on the results of Hogeweg and Hesper [64]
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a n=30,δ=22.5◦
#ignore: +-F
F1F1F1
0 < 0 > 0 → 0
0 < 0 > 1 → 1[+F1F1]
0 < 1 > 0 → 1
0 < 1 > 1 → 1
1 < 0 > 0 → 0
1 < 0 > 1 → 1F1
1 < 1 > 0 → 0
1 < 1 > 1 → 0
* < + > * → -
* < - > * → +

b n=30,δ=22.5◦
#ignore: +-F
F1F1F1
0 < 0 > 0 → 1
0 < 0 > 1 → 1[-F1F1]
0 < 1 > 0 → 1
0 < 1 > 1 → 1
1 < 0 > 0 → 0
1 < 0 > 1 → 1F1
1 < 1 > 0 → 1
1 < 1 > 1 → 0
* < + > * → -
* < - > * → +

c n=26, δ=25.75◦
#ignore: +-F
F1F1F1
0 < 0 > 0 → 0
0 < 0 > 1 → 1
0 < 1 > 0 → 0
0 < 1 > 1 → 1[+F1F1]
1 < 0 > 0 → 0
1 < 0 > 1 → 1F1
1 < 1 > 0 → 0
1 < 1 > 1 → 0
* < - > * → +
* < + > * → -

d n=24, δ=25.75◦
#ignore: +-F
F0F1F1
0 < 0 > 0 → 1
0 < 0 > 1 → 0
0 < 1 > 0 → 0
0 < 1 > 1 → 1F1
1 < 0 > 0 → 1
1 < 0 > 1 → 1[+F1F1]
1 < 1 > 0 → 1
1 < 1 > 1 → 0
* < + > * → -
* < - > * → +

e n=26, δ=22.5◦
#ignore: +-F
F1F1F1
0 < 0 > 0 → 0
0 < 0 > 1 → 1[-F1F1]
0 < 1 > 0 → 1
0 < 1 > 1 → 1
1 < 0 > 0 → 0
1 < 0 > 1 → 1F1
1 < 1 > 0 → 1
1 < 1 > 1 → 0
* < + > * → -
* < - > * → +

Figure 1.31 (continued): L-systems of Hogeweg and Hesper
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1.9 Growth functions

During the synthesis of a plant model it is often convenient to dis-Exponential
growth tinguish productions that specify the branching pattern from those

that describe elongation of plant segments. This separation can be
observed in some of the L-systems considered so far. For example, in
L-systems (d), (e) and (f) from Figure 1.24 the first productions cap-
ture the branching patterns, while the remaining productions, equal in
all cases to F → FF , describe elongation of segments represented by
sequences of symbols F . The number of letters F in a string χn orig-
inating from a single letter F is doubled in each derivation step, thus
the elongation is exponential, with length(χn) = 2n.

A function that describes the number of symbols in a word in termsBasic
properties of its derivation length is called a growth function. The theory of L-

systems contains an extensive body of results on growth functions [62,
127]. The central observation is that the growth functions of DOL-
systems are independent of the letter ordering in the productions and
derived words. Consequently, the relation between the number of letter
occurrences in a pair of words µ and ν, such that µ ⇒ ν, can be
conveniently expressed using matrix notation.

Let G = 〈V, ω, P 〉 be a DOL-system and assume that letters of
the alphabet V have been ordered, V = {a1, a2, . . . , am}. Construct a
square matrix Qm×m, where entry qij is equal to the number of occur-
rences of letter aj in the successor of the production with predecessor
ai. Let ak

i denote the number of occurrences of letter ai in the word
x generated by G in a derivation of length k. The definition of direct
derivation in a DOL-system implies that

[
ak

1 ak
2 · · · ak

m

]



q11 q12 · · · q1m

q21 q22 · · · q2m
...

qm1 qm2 · · · qmm


 =

[
ak+1

1 ak+1
2 · · · ak+1

m

]
.

This matrix notation is useful in the analysis of growth functions. For
example, consider the following L-system:

ω : a
p1 : a → ab
p2 : b → a

(1.2)

The relationship between the number of occurrences of letters a and b
in two consecutively derived words is

[
ak bk

] [
1 1
1 0

]
=

[
ak+1 bk+1

]
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or
ak+1 = ak + bk = ak + ak−1

for k = 1, 2, 3, . . . . From the axiom it follows that a0 = 1 and
a1 = b0 = 0. Thus, the number of letters a in the strings gener-
ated by the L-system specified in equation (1.2) grows according to the
Fibonacci series: 1, 1, 2, 3, 5, 8, . . . . This growth function was imple-
mented by productions p2 and p3 in the L-system generating the bush
in Figure 1.25 (page 26) to describe the elongation of its internodes.

Polynomial growth functions of arbitrary degree can be obtained Polynomial
growthusing L-systems of the following form:

ω : a0

p1 : a0 → a0a1

p2 : a1 → a1a2

p3 : a2 → a2a3

p4 : a3 → a3a4
...

The matrix Q is given below:

Q =




1 1 0 0 · · ·
0 1 1 0 · · ·
0 0 1 1 · · ·
0 0 0 1 · · ·

...




Thus, for any i, k ≥ 1, the number ak
i of occurrences of symbol ai in

the string generated in a derivation of length k satisfies the equality

ak
i + ak

i+1 = ak+1
i+1 .

Taking into consideration the axiom, the distribution of letters ai as
a function of the derivation length is captured by the following table
(only non-zero terms are shown):

k ak
0 ak

1 ak
2 ak

3 ak
4 ak

5 ak
6 ak

7

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1

...
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This table represents the Pascal triangle, thus for any k ≥ i ≥ 1 its
terms satisfy the following equality:

ak
i =

(
k
i

)
=

k(k − 1) · · · (k − i + 1)

1 · 2 · · · i

Consequently, the number of occurrences of letter ai as a function of
the derivation length k is expressed by a polynomial of degree i. By
identifying letter ai with the turtle symbol F , it is possible to model in-
ternode elongation expressed by polynomials of arbitrary degree i ≥ 0.
This observation was generalized by Szilard [140], who developed an al-
gorithm for constructing a DOL-system with growth functions specified
by any positive, nondecreasing polynomials with integer coefficients [62,
page 276].

The examples of growth functions considered so far include expo-Characterization
nential and polynomial functions. Rozenberg and Salomaa [127, pages
30–38] show that, in general, the growth function fG(n) of any DOL-
system G = 〈V, ω, P 〉 is a combination of polynomial and exponential
functions:

fG(n) =
s∑

i=1

Pi(n)ρn
i for n ≥ n0, (1.3)

where Pi(n) denotes a polynomial with integer coefficients, ρi is a non-
negative integer, and n0 is the total number of letters in the alphabet
V . Unfortunately, many growth processes observed in nature cannot be
described by equation (1.3). Two approaches are then possible within
the framework of the theory of L-systems.

The first is to extend the size n0 of the alphabet V , so that theSigmoidal
growth growth process of interest will be captured by the initial derivation

steps, ω = µ0 ⇒ µ1 ⇒ · · · ⇒ µn0 , before equation (1.3) starts to apply.
For example, the L-system

ω : a0

pi : ai → ai+1b0 for i < k
pk+j : bj → bj+1F for j < l

(1.4)

over the alphabet V = {a0, a1, ..., ak}∪{b0, b1, ..., bl}∪{F} can be used
to approximate a sigmoidal elongation of a segment represented by a
sequence of symbols F (Figure 1.32). The term sigmoidal refers to a
function with a plot in the shape of the letter S. Such functions are
commonly found in biological processes [143], with the initial part of
the curve representing the growth of a young organism, and the latter
part corresponding to the organism close to its final size.

The second approach to the synthesis of growth functions out-
side the class captured by equation (1.3) is to use context-sensitiveSquare-root

growth L-systems. For example, the following 2L-system has a growth func-
tion given by fG(n) = �√n
 + 4, where �x
 is the floor function.
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Figure 1.32: A sigmoidal growth function implemented using the L-system
in equation (1.4), for k = l = 20

ω : XFuFaX
p1 : Fu < Fa > Fa → Fu

p2 : Fu < Fa > X → FdFa

p3 : Fa < Fa > Fd → Fd

p4 : X < Fa > Fd → Fu

p5 : Fu → Fa

p6 : Fd → Fa

(1.5)

The operation of this L-system is illustrated in Figure 1.33. Produc-
tions p1 and p3, together with p5 and p6, propagate symbols Fu and Fd

up and down the string of symbols µ. Productions p2 and p4 change the
propagation direction, after symbol X marking a string end has been
reached by Fu or Fd, respectively. In addition, p2 extends the string
with a symbol Fa. Thus, the number of derivation steps increases by
two between consecutive applications of production p2. As a result,
string extension occurs at derivation steps n expressed by the square
of the string length, which yields the growth function �√n
 + 4.

In practice it is often difficult, if not impossible, to find L-systems Limitations
with the required growth functions. Vitányi [153] illustrates this by
referring to sigmoidal curves:

If we want to obtain sigmoidal growth curves with the
original L-systems then not even the introduction of cell
interaction can help us out. In the first place, we end up
constructing quite unlikely flows of messages through the
organism, which are more suitable to electronic computers,
and in fact give the organism universal computing power.
Secondly, and this is more fundamental, we can not obtain
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Figure 1.33: Square-root growth implemented using the L-system specified
in equation (1.5)

growth which, always increasing the size of the organism,
tends towards stability in the limit. The slowest increasing
growth we can obtain by allowing cell interaction is loga-
rithmic and thus can not at all account for the asymptotic
behavior of sigmoidal growth functions.

In the next section we present an extension of L-systems that makes
it possible to avoid this problem by allowing for explicit inclusion of
growth functions into L-system specifications.

1.10 Parametric L-systems

Although L-systems with turtle interpretation make it possible to gen-Motivation
erate a variety of interesting objects, from abstract fractals to plant-like
branching structures, their modeling power is quite limited. A major
problem can be traced to the reduction of all lines to integer multi-
ples of the unit segment. As a result, even such a simple figure as an
isosceles right-angled triangle cannot be traced exactly, since the ratio
of its hypotenuse length to the length of a side is expressed by the irra-
tional number

√
2. Rational approximation of line length provides only

a limited solution, because the unit step must be the smallest common

�
�

�
��

1

1

√
2

denominator of all line lengths in the modeled structure. Consequently,
the representation of a simple plant module, such as an internode, may
require a large number of symbols. The same argument applies to an-
gles. Problems become even more pronounced while simulating changes
to the modeled structure over time, since some growth functions can-
not be expressed conveniently using L-systems. Generally, it is difficult
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to capture continuous phenomena, since the obvious technique of dis-
cretizing continuous values may require a large number of quantization
levels, yielding L-systems with hundreds of symbols and productions.
Consequently, model specification becomes difficult, and the mathe-
matical beauty of L-systems is lost.

In order to solve similar problems, Lindenmayer proposed that nu-
merical parameters be associated with L-system symbols [83]. He illus-
trated this idea by referring to the continuous development of branching
structures and diffusion of chemical compounds in a nonbranching fil-
ament of Anabaena catenula. Both problems were revisited in later
papers [25, 77]. A definition of parametric L-systems was formulated
by Prusinkiewicz and Hanan [113] and is presented below.

1.10.1 Parametric OL-systems

Parametric L-systems operate on parametric words, which are strings Parametric
wordsof modules consisting of letters with associated parameters. The let-

ters belong to an alphabet V , and the parameters belong to the set
of real numbers �. A module with letter A ∈ V and parameters
a1, a2, ..., an ∈ � is denoted by A(a1, a2, ..., an). Every module belongs
to the set M = V ×�∗, where �∗ is the set of all finite sequences of pa-
rameters. The set of all strings of modules and the set of all nonempty
strings are denoted by M∗ = (V ×�∗)∗ and M+ = (V ×�∗)+, respec-
tively.

The real-valued actual parameters appearing in the words corre- Expressions
spond with formal parameters used in the specification of L-system
productions. If Σ is a set of formal parameters, then C(Σ) denotes a
logical expression with parameters from Σ, and E(Σ) is an arithmetic
expression with parameters from the same set. Both types of expres-
sions consist of formal parameters and numeric constants, combined
using the arithmetic operators +, −, ∗, /; the exponentiation operator
∧, the relational operators <, >, =; the logical operators !, &, | (not,
and, or); and parentheses (). Standard rules for constructing syntac-
tically correct expressions and for operator precedence are observed.
Relational and logical expressions evaluate to zero for false and one for
true. A logical statement specified as the empty string is assumed to
have value one. The sets of all correctly constructed logical and arith-
metic expressions with parameters from Σ are noted C(Σ) and E(Σ).

A parametric OL-system is defined as an ordered quadruplet G = Parametric
OL-system〈V, Σ, ω, P 〉, where

• V is the alphabet of the system,

• Σ is the set of formal parameters,

• ω ∈ (V ×�∗)+ is a nonempty parametric word called the axiom,

• P ⊂ (V ×Σ∗)×C(Σ)× (V ×E(Σ))∗ is a finite set of productions.
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The symbols : and → are used to separate the three components of a
production: the predecessor, the condition and the successor. For exam-
ple, a production with predecessor A(t), condition t > 5 and successor
B(t + 1)CD(t ∧ 0.5, t − 2) is written as

A(t) : t > 5 → B(t + 1)CD(t ∧ 0.5, t − 2). (1.6)

A production matches a module in a parametric word if the followingDerivation
conditions are met:

• the letter in the module and the letter in the production prede-
cessor are the same,

• the number of actual parameters in the module is equal to the
number of formal parameters in the production predecessor, and

• the condition evaluates to true if the actual parameter values are
substituted for the formal parameters in the production.

A matching production can be applied to the module, creating a string
of modules specified by the production successor. The actual parame-
ter values are substituted for the formal parameters according to their
position. For example, production (1.6) above matches a module A(9),
since the letter A in the module is the same as in the production pre-
decessor, there is one actual parameter in the module A(9) and one
formal parameter in the predecessor A(t), and the logical expression
t > 5 is true for t = 9. The result of the application of this production
is a parametric word B(10)CD(3, 7).

If a module a produces a parametric word χ as the result of a
production application in an L-system G, we write a �→ χ. Given a
parametric word µ = a1a2...am, we say that the word ν = χ1χ2...χm

is directly derived from (or generated by) µ and write µ =⇒ ν if and
only if ai �→ χi for all i = 1, 2, ...,m. A parametric word ν is generated
by G in a derivation of length n if there exists a sequence of words
µ0, µ1, ..., µn such that µ0 = ω, µn = ν and µ0 =⇒ µ1 =⇒ ... =⇒ µn.

An example of a parametric L-system is given below.Example

ω : B(2)A(4, 4)
p1 : A(x, y) : y <= 3 → A(x ∗ 2, x + y)
p2 : A(x, y) : y > 3 → B(x)A(x/y, 0)
p3 : B(x) : x < 1 → C
p4 : B(x) : x >= 1 → B(x − 1)

(1.7)

As in the case of non-parametric L-systems, it is assumed that a module
replaces itself if no matching production is found in the set P . The
words obtained in the first few derivation steps are shown in Figure 1.34.
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Figure 1.34: The initial sequence of strings generated by the parametric
L-system specified in equation (1.7)

1.10.2 Parametric 2L-systems

Productions in parametric OL-systems are context-free, i.e., applicable
regardless of the context in which the predecessor appears. A context-
sensitive extension is necessary to model information exchange between
neighboring modules. In the parametric case, each component of the
production predecessor (the left context, the strict predecessor and the
right context) is a parametric word with letters from the alphabet V
and formal parameters from the set Σ. Any formal parameters may
appear in the condition and the production successor.

A sample context-sensitive production is given below: Example

A(x) < B(y) > C(z) : x + y + z > 10 → E((x + y)/2)F ((y + z)/2)

It can be applied to the module B(5) that appears in a parametric word

· · ·A(4)B(5)C(6) · · · (1.8)

since the sequence of letters A,B,C in the production and in parametric
word (1.8) are the same, the numbers of formal parameters and actual
parameters coincide, and the condition 4 + 5 + 6 > 10 is true. As a
result of the production application, the module B(5) will be replaced
by a pair of modules E(4.5)F (5.5). Naturally, the modules A(4) and
C(6) will be replaced by other productions in the same derivation step.

Parametric 2L-systems provide a convenient tool for expressing de- Anabaena with
heterocystsvelopmental models that involve diffusion of substances throughout an

organism. A good example is provided by an extended model of the
pattern of cells observed in Anabaena catenula and other blue-green
bacteria [99]. This model was proposed by de Koster and Linden-
mayer [25].
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#define CH 900 /* high concentration */
#define CT 0.4 /* concentration threshold */
#define ST 3.9 /* segment size threshold */
#include H /* heterocyst shape specification */
#ignore f ∼ H

ω : -(90)F(0,0,CH)F(4,1,CH)F(0,0,CH)

p1 : F(s,t,c) : t=1 & s>=6 →
F(s/3*2,2,c)f(1)F(s/3,1,c)

p2 : F(s,t,c) : t=2 & s>=6 →
F(s/3,2,c)f(1)F(s/3*2,1,c)

p3 : F(h,i,k) < F(s,t,c) > F(o,p,r) : s>ST|c>CT →
F(s+.1,t,c+0.25*(k+r-3*c))

p4 : F(h,i,k) < F(s,t,c) > F(o,p,r) : !(s>ST|c>CT) →
F(0,0,CH) ∼ H(1)

p5 : H(s) : s<3 → H(s*1.1)

L-system 1.1: Anabaena catenula

Generally, the bacteria under consideration form a nonbranching fila-
ment consisting of two classes of cells: vegetative cells and heterocysts.
Usually, the vegetative cells divide and produce two daughter vegeta-
tive cells. This mechanism is captured by the L-system specified in
equation (1.1) and Figure 1.4 (page 5). However, in some cases the
vegetative cells differentiate into heterocysts. Their distribution forms
a well-defined pattern, characterized by a relatively constant number
of vegetative cells separating consecutive heterocysts. How does the
organism maintain constant spacing of heterocysts while growing? The
model explains this phenomenon using a biologically well-motivated
hypothesis that heterocyst distribution is regulated by nitrogen com-
pounds produced by the heterocysts, transported from cell to cell across
the filament, and decayed in the vegetative cells. If the compound’s
concentration in a young vegetative cell falls below a specific level, this
cell differentiates into a heterocyst (L-system 1.1).

The #define statements assign values to numerical constants used
in the L-system. The #include statement specifies the shape of a het-
erocyst (a disk) by referring to a library of predefined shapes (see Sec-
tion 5.1). Cells are represented by modules F (s, t, c), where s stands
for cell length, t is cell type (0 - heterocyst, 1 and 2 - vegetative types1),

1The model of Anabaena introduced in Section 1.2 distinguished between four
types of cells: ar, br, al and bl. Cells b do not divide and can be considered as young
forms of the corresponding cells a. Thus, the vegetative type 1 considered here
embraces cells ar and br, while type 2 embraces al and bl. The formal relationship
between the four-cell and two-cell models is further discussed in Chapter 6.
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Figure 1.35: Development of Anabaena catenula with heterocysts, simulated
using parametric L-system 1.1

and c represents the concentration of nitrogen compounds. Productions
p1 and p2 describe division of the vegetative cells. They each create two
daughter cells of unequal length. The difference between cells of type
1 and 2 lies in the ordering of the long and short daughter cells. Pro-
duction p3 captures the processes of transportation and decay of the
nitrogen compounds. Their concentration c is related to the concen-
tration in the neighboring cells k and r, and changes in each derivation
step according to the formula

c′ = c + 0.25(k + r − 3 ∗ c).

Production p4 describes differentiation of a vegetative cell into a hete-
rocyst. The condition specifies that this process occurs when the cell
length does not exceed the threshold value ST = 3.9 (which means
that the cell is young enough), and the concentration of the nitrogen
compounds falls below the threshold value CT = 0.4. Production p5

describes the subsequent growth of the heterocyst.
Snapshots of the developmental sequence of Anabaena are given

in Figure 1.35. The vegetative cells are shown as rectangles, colored
according to the concentration of the nitrogen compounds (white means
low concentration). The heterocysts are represented as red disks. The
values of parameters CH, CT and ST were selected to provide the
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correct distribution of the heterocysts, and correspond closely to the
values reported in [25]. The mathematical model made it possible to
estimate these parameters, although they are not directly observable.

1.10.3 Turtle interpretation of parametric words

If one or more parameters are associated with a symbol interpreted by
the turtle, the value of the first parameter controls the turtle’s state.
If the symbol is not followed by any parameter, default values specified
outside the L-system are used as in the non-parametric case. The basic
set of symbols affected by the introduction of parameters is listed below.

F (a) Move forward a step of length a > 0. The position of the
turtle changes to (x′, y′, z′), where x′ = x + a�Hx, y′ = y + a�Hy

and z′ = z + a�Hz. A line segment is drawn between points
(x, y, z) and (x′, y′, z′).

f(a) Move forward a step of length a without drawing a line.

+(a) Rotate around �U by an angle of a degrees. If a is positive, the
turtle is turned to the left and if a is negative, the turn is to
the right.

&(a) Rotate around �L by an angle of a degrees. If a is positive,
the turtle is pitched down and if a is negative, the turtle is
pitched up.

/(a) Rotate around �H by an angle of a degrees. If a is positive, the
turtle is rolled to the right and if a is negative, it is rolled to
the left.

It should be noted that symbols +, &, ∧, and / are used both as
letters of the alphabet V and as operators in logical and arithmetic
expressions. Their meaning depends on the context.

The following examples illustrate the operation of parametric L-Row of trees
systems with turtle interpretation. The first L-system is a coding of
a Koch construction generating a variant of the snowflake curve (Fig-
ure 1.1 on page 2). The initiator (production predecessor) is the hy-
potenuse AB of a right triangle ABC (Figure 1.36). The first and the
fourth edge of the generator subdivide AB into segments AD and DB,
while the remaining two edges traverse the altitude CD in opposite di-
rections. From elementary geometry it follows that the lengths of these
segments satisfy the equations

q = c − p and h =
√

pq.

The edges of the generator can be associated with four triangles that
are similar to ABC and tile it without gaps. According to the relation-
ship between curve construction by edge rewriting and planar tilings
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Figure 1.36: Construction of the generator for a “row of trees.” The edges
are associated with triangles indicated by ticks.

(Section 1.4.1), the generated curve will approximately fill the triangle
ABC. The corresponding L-system is given below:

#define c 1
#define p 0.3
#define q c − p
#define h (p ∗ q) ∧ 0.5

ω : F (1)
p1 : F (x) → F (x ∗ p) + F (x ∗ h) −−F (x ∗ h) + F (x ∗ q)

The resulting curve is shown in Figure 1.37a. In order to better
visualize its structure, the angle increment has been set to 86◦ instead
of 90◦. The curve fills different areas with unequal density. This results
from the fact that all edges, whether long or short, are replaced by
the generator in every derivation step. A modified curve that fills the
underlying triangle in a more uniform way is shown in Figure 1.37b. It
was obtained by delaying the rewriting of shorter segments with respect
to the longer ones, as specified by the following L-system.

ω : F (1, 0)
p1 : F (x, t) : t = 0 → F (x ∗ p, 2) + F (x ∗ h, 1)−

−F (x ∗ h, 1) + F (x ∗ q, 0)
p2 : F (x, t) : t > 0 → F (x, t − 1)

The next example makes use of node rewriting (Section 1.4.2). The Branching
structureconstruction recursively subdivides a rectangular tile ABCD into two

tiles, AEFD and BCFE, similar to ABCD (Figure 1.38). The lengths
of the edges form the proportion

a

b
=

b
1
2
a
,
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Figure 1.37: Two curves suggesting a “row of trees.” Curve (b) is from [95,
page 57].

which implies that b = a/
√

2. Each tile is associated with a single-point
frame lying in the tile center. The tiles are connected by a branching
line specified by the following L-system:

#define R 1.456
ω : A(1)
p1 : A(s) → F (s)[+A(s/R)][−A(s/R)]

(1.9)

The ratio of branch sizes R slightly exceeds the theoretical value of√
2. As a result, the branching structure shown in Figure 1.39 is self-

avoiding. The angle increment was set arbitrarily to δ = 85◦.
The L-system in equation (1.9) operates by appending segments

of decreasing length to the structures obtained in previous derivation
steps. Once a segment has been incorporated, its length does not
change. A structure with identical proportions can be obtained by
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Figure 1.38: Tiling associated with a space-filling branching pattern

Figure 1.39: A branching pattern generated by the L-system specified in
equation (1.9)
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Figure 1.40: Initial sequences of figures generated by the L-systems specified
in equations (1.9) and (1.10)

appending segments of constant length and increasing the lengths of
previously created segments by constant R in each derivation step. The
corresponding L-system is given below.

ω : A
p1 : A → F (1)[+A][−A]
p2 : F (s) → F (s ∗ R)

(1.10)

The initial sequence of structures obtained by both L-systems are
compared in Figure 1.40. Sequence (a) emphasizes the fractal character
of the resulting structure. Sequence (b) suggests the growth of a tree.
The next two chapters show that this is not a mere coincidence, and
the L-system specified in equation (1.10) is a simple, but in principle
correct, developmental model of a sympodial branching pattern found
in many herbaceous plants and trees.



Chapter 2

Modeling of trees

Computer simulation of branching patterns has a relatively long history. Cellular–space
modelsThe first model was proposed by Ulam [149], (see also [138, pages 127–

131]), and employed the concept of cellular automata that had been
developed earlier by von Neumann and Ulam [156]. The branching
pattern is created iteratively, starting with a single colored cell in a
triangular grid, then coloring cells that touch one and only one vertex
of a cell colored in the previous iteration step.

This basic idea gave rise to several extensions. Meinhardt [97, Chap-
ter 15] substituted the triangular grid with a square one, and used the
resulting cellular space to examine biological hypotheses related to the
formation of net-like structures. In addition to pure branching patterns,
his models capture the effect of branch reconnection or anastomosis that
may take place between the veins of a leaf. Greene [54] extended cellu-
lar automata to three dimensions, and applied the resulting voxel space
automata to simulate growth processes that react to the environment.
For instance, Figure 2.1 presents the growth of a vine over a house.
Cohen [15] simulated the development of a branching pattern using ex-
pansion rules that operate in a continuous “density field” rather than
a discrete cellular or voxel space.

The common feature of these approaches is the emphasis on inter-
actions between various elements of a growing structure, as well as the
structure and the environment. Although interactions clearly influence
the development of real plants, they also add to the complexity of the
models. This may explain why simpler models, ignoring even such fun-
damental factors as collisions between branches, have been prevalent to
date. The first model in that category was proposed by Honda [65] who Honda’s model
studied the form of trees using the following assumptions (Figure 2.2).

• Tree segments are straight and their girth is not considered.

• A mother segment produces two daughter segments through one
branching process.
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Figure 2.1: Organic architecture by Greene [54]

• The lengths of the two daughter segments are shortened by con-
stant ratios, r1 and r2, with respect to the mother segment.

• The mother segment and its two daughter segments are contained
in the same branch plane. The daughter segments form constant
branching angles, a1 and a2, with respect to the mother branch.

• The branch plane is fixed with respect to the direction of gravity
so as to be closest to a horizontal plane.1 An exception is made
for branches attached to the main trunk. In this case, a constant
divergence angle α between consecutively issued lateral segments
is maintained (cf. Chapter 4).

By changing numerical parameters, Honda obtained a wide vari-
ety of tree-like shapes. With some improvements [38], his model was
applied to investigate branching patterns of real trees [39, 66, 67, 68].
Subsequently, different rules for branching angles were proposed to cap-
ture the structure of trees in which planes of successive bifurcations are
perpendicular to each other [69]. The results of Honda served as a basis
for the tree models proposed by Aono and Kunii [2]. They suggested

1More formally, the line perpendicular to the mother segment and lying in the
branch plane is horizontal.
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Figure 2.2: Specification of tree geometry according to Honda [65]

several extensions to his model, the most important of which was the
biasing of branch positions in a particular direction, applied to produce
the effects of wind, phototropism and gravity. A similar concept was
introduced previously by Cohen [15], while more accurate physically-
based methods for branch bending were developed by de Reffye [28]
and Armstrong [4].

The models of Honda and Aono and Kunii were rendered using Realism
straight lines of constant or varying width to represent “tree skele-
tons.” A substantial improvement in the realism of synthetic images
was achieved by Bloomenthal [11] and Oppenheimer [105], who intro-
duced curved branches, carefully modeled surfaces around branching
points, and textured bark and leaves (Figure 2.3).

The approaches stemming from the work of Honda defined branching Stochastic
modelsstructures using deterministic algorithms. In contrast, stochastic mech-

anisms are essential to the group of tree models proposed by Reeves and
Blau [119], de Reffye et al. [30], and Remphrey, Neal and Steeves [120].
Although these models were described using different terminologies,
they share the basic paradigm of specifying tree structures in terms of
probabilities with which branches are formed. The work of Reeves and
Blau aimed at producing tree-like shapes without delving into biological
details of the modeled structures (Figure 2.4). In contrast, de Reffye
et al. [29] used a stochastic approach to simulate the development of Approach of

de Reffyereal plants by modeling the activity of buds at discrete time intervals.
Given a clock signal, a bud can either:

• do nothing,

• become a flower,

• become an internode terminated by a new straight apex and one
or more lateral apices subtended by leaves, or

• die and disappear.
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Figure 2.3: Acer graphics by Bloomenthal [11]

Figure 2.4: A forest scene by Reeves [119] c©1984 Pixar
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Figure 2.5: Oil palm tree canopy from CIRAD Modelisation Laboratory

These events occur according to stochastic laws characteristic for each
variety and each species. The geometric parameters, such as the length
and diameter of an internode, as well as branching angles, are also
calculated according to stochastic laws.

The basic types of developmental rules incorporated into this method
correspond to the 23 different types of tree architectures identified by
Hallé, Oldeman and Tomlinson [58]. Detailed models of selected plant
species were developed and are described in the literature [16, 20, 26,
27, 76]. A sample tree model is shown in Figure 2.5. The approach of
Remphrey [120, 121, 122] is similar to that of de Reffye, except that
larger time steps are used (one year in the model of bearberry described
in [120]). Consequently, the stochastic rules must describe the entire
configuration of lateral shoots that can be formed over a one-year pe-
riod.

The application of L-systems to the generation of botanical trees was Application of
L-systemsfirst considered by Aono and Kunii [2]. They referred to the original

definition of L-systems [82] and found them unsuitable to model the
complex branching patterns of higher plants. However, their arguments
do not extend to parametric L-systems with turtle interpretation. For
example, the L-system in Figure 2.6 implements those tree models of
Honda [65] in which one of the branching angles is equal to 0, yielding
a monopodial structure with clearly delineated main and lateral axes
(see Section 3.2 for a formal characterization).
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n = 10
#define r1 0.9 /* contraction ratio for the trunk */
#define r2 0.6 /* contraction ratio for branches */
#define a0 45 /* branching angle from the trunk */
#define a2 45 /* branching angle for lateral axes */
#define d 137.5 /* divergence angle */
#define wr 0.707 /* width decrease rate */

ω : A(1,10)
p1: A(l,w) : *→ !(w)F(l)[&(a0)B(l*r2,w*wr)]/(d)A(l*r1,w*wr)
p2: B(l,w) : *→ !(w)F(l)[-(a2)$C(l*r2,w*wr)]C(l*r1,w*wr)
p3: C(l,w) : *→ !(w)F(l)[+(a2)$B(l*r2,w*wr)]B(l*r1,w*wr)

Figure 2.6: Examples of the monopodial tree-like structures of Honda [65],
generated using L-systems
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According to production p1, the apex of the main axis A produces Monopodial
branchingan internode F and a lateral apex B in each derivation step. Con-

stants r1 and r2 specify contraction ratios for the straight and lateral
segments, a0 and a2 are branching angles and d is the divergence angle.
Module !(w) sets the line width to w, thus production p1 decreases Branch width
the width of the daughter segments with respect to the mother seg-
ment by the factor wr = 0.707. This constant satisfies a postulate by
Leonardo da Vinci [95, page 156], according to which “all the branches
of a tree at every stage of its height when put together are equal in
thickness to the trunk below them.” In the case where a mother branch
of diameter w1 gives rise to two daughter branches of equal diameter
w2, this postulate yields the equation w2

1 = 2w2
2, which gives a value for

wr equal to w2/w1 = 1/
√

2 ≈ 0.707. A general discussion of the rela-
tionships between the diameters of the mother and daughter branches
is included in the book by Macdonald [94, pages 131–135].

Productions p2 and p3 describe subsequent development of the lat-
eral branches. In each derivation step, the straight apex (either B or C)
issues a lateral apex of the next order at angle a2 or −a2 with respect
to the mother axis. Two productions are employed to create lateral
apices alternately to the left and right. The symbol $ rolls the turtle Keeping

turtle’s
orientation

around its own axis so that vector �L pointing to the left of the turtle
(Section 1.5) is brought to a horizontal position. Consequently, the
branch plane is “closest to a horizontal plane,” as required by Honda’s
model. From a technical point of view, $ modifies the turtle orientation
in space according to the formulae

�L =
�V × �H

|�V × �H|
and �U = �H × �L,

where vectors �H, �L and �U are the heading, left and up vectors associated
with the turtle, �V is the direction opposite to gravity, and |�A| denotes
the length of vector �A. The tree-like structures shown in Figure 2.6
were generated using the values of constants listed in Table 2.1, and
coincide with the structures presented by Honda.

Figure r1 r2 a0 a2

a 0.9 0.6 45 45
b 0.9 0.9 45 45
c 0.9 0.8 45 45
d 0.9 0.7 30 -30

Table 2.1: Constants for the monopodial tree structures in Figure 2.6



58 Modeling of trees

A slightly different L-system, specified in Figure 2.7, captures sym-Sympodial
branching podial structures, where both daughter segments form non-zero angles

with the mother segment. In this case the activity of the main apex is
reduced to the formation of the trunk F and a pair of lateral apices B
(production p1). The subsequent branching pattern is captured by pro-
duction p2. The sample structures in Figure 2.7 were obtained using the
constants listed in Table 2.2, and correspond to the models presented
by Aono and Kunii.

The L-systems considered so far have been designed in a manner
that emphasizes their relation to the models described in the litera-
ture. Specifically, all segments are assigned their final length at the
time of creation, and no further elongation occurs. As pointed out in
Section 1.10.3, similar structures can be obtained by creating new seg-
ments of constant length and increasing the lengths of previously cre-
ated segments by a constant factor in each derivation step. A sample
L-system constructed according to this paradigm is given in Figure 2.8.

The overall structure of the tree is defined by production p1. InTernary
branching each derivation step, apex A produces three new branches terminated

by their own apices. Parameter w and constant vr relate the width of
the mother branch w1 to that of the daughter branches w2. According
to da Vinci’s postulate w2

1 = 3w2
2, thus vr = w1/w2 =

√
3 ≈ 1.732.

Productions p2 and p3 capture the gradual elongation of branches and
the increase in their diameter over time.

The bending of branches is simulated by slightly rotating the tur-Tropism
tle in the direction of a predefined tropism vector �T after drawing each
segment (Figure 2.9). The orientation adjustment α is calculated us-
ing the formula α = e |�H × �T |, where e is a parameter capturing axis
susceptibility to bending. This heuristic formula has a physical moti-
vation; if �T is interpreted as a force applied to the endpoint of vector �H,
and �H can rotate around its starting point, the torque is equal to �H ×�T .
The parameters relevant to the generation of the tree-like structures in
Figure 2.8 are listed in Table 2.3. A more realistic rendering of the tree
in Figure 2.8d is presented in Figure 2.10.

Figure r1 r2 a1 a2

a 0.9 0.7 5 65
b 0.9 0.7 10 60
c 0.9 0.8 20 50
d 0.9 0.8 35 35

Table 2.2: Constants for the sympodial tree structures in Figure 2.7
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n = 10
#define r1 0.9 /* contraction ratio 1 */
#define r2 0.7 /* contraction ratio 2 */
#define a1 10 /* branching angle 1 */
#define a2 60 /* branching angle 2 */
#define wr 0.707 /* width decrease rate */

ω : A(1,10)
p1 : A(l,w) : *→ !(w)F(l)[&(a1)B(l*r1,w*wr)]

/(180)[&(a2)B(l*r2,w*wr)]
p2 : B(l,w) : *→ !(w)F(l)[+(a1)$B(l*r1,w*wr)]

[-(a2)$B(l*r2,w*wr)]

Figure 2.7: Examples of the sympodial tree-like structures of Aono and
Kunii [2], generated using L-systems
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#define d1 94.74 /* divergence angle 1 */
#define d2 132.63 /* divergence angle 2 */
#define a 18.95 /* branching angle */
#define lr 1.109 /* elongation rate */
#define vr 1.732 /* width increase rate */

ω : !(1)F(200)/(45)A
p1 : A : * → !(vr)F(50)[&(a)F(50)A]/(d1)

[&(a)F(50)A]/(d2)[&(a)F(50)A]
p2 : F(l) : *→ F(l*lr)
p3 : !(w) : *→ !(w*vr)

Figure 2.8: Examples of tree-like structures with ternary branching
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Figure 2.9: Correction α of segment orientation �H due to tropism �T

Figure d1 d2 a lr �T e n
a 94.74 132.63 18.95 1.109 0.00,-1.00,0.00 0.22 6
b 137.50 137.50 18.95 1.109 0.00,-1.00,0.00 0.14 8
c 112.50 157.50 22.50 1.790 -0.02,-1.00,0.00 0.27 8
d 180.00 252.00 36.00 1.070 -0.61,0.77,-0.19 0.40 6

Table 2.3: Constants for the tree structures in Figure 2.8

Figure 2.10: Medicine Lake by Musgrave et al. [101]
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Figure 2.11: A surrealistic elevator

The examples given above demonstrate that the tree models of Honda,Conclusions
as well as their derivatives studied by Aono and Kunii, can be expressed
using the formalism of L-systems. In a separate study, Shebell [130] also
showed that L-systems can be applied to generate the architectural tree
models of Hallé, Oldeman and Tomlinson [58]. These results indicate
that L-systems may play an important role as a tool for biologically-
correct simulation of tree development and synthesis of realistic tree
images. However, the tree-like shapes created so far are rather generic
(Figure 2.11), and models of particular tree species, directly based on
biological data, are yet to be developed. L-systems have found more
applications in the domain of realistic modeling of herbaceous plants,
discussed in the next chapter.



Chapter 3

Developmental models of
herbaceous plants

The examples of trees presented in the previous chapter introduce L-
systems as a plant modeling tool. They also illustrate one of the most
striking features of the generative approach to modeling, called data
base amplification [136]. This term refers to the generation of complex-
looking objects from very concise descriptions – in our case, L-systems
comprised of small numbers of productions. Yet in spite of the small
size, the specification of L-systems is not a trivial task.

In the case of highly self-similar structures, the synthesis methods
based on edge rewriting and node rewriting are of assistance, as illus-
trated by the examples considered in Section 1.10.3. However, a more
general approach is needed to model the large variety of developmental
patterns and structures found in nature.

The methodology presented in this chapter is based on the simu- Developmental
modelslation of the development of real plants. Thus, a particular form is

modeled by capturing the essence of the developmental process that
leads to this form. This approach has two distinctive features.

• Emphasis on the space-time relation between plant parts.
In many plants, organs in various stages of development can be
observed at the same time. For example, some flowers may still
be in the bud stage, others may be fully developed, and still
others may have been transformed into fruits. If development
is simulated down to the level of individual organs, such phase
effects are reproduced in a natural way.

• Inherent capability of growth simulation. The mathemati-
cal model can be used to generate biologically correct images of
plants at different ages and to create sequences of images illus-
trating plant development in time.
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The models are constructed under the assumption that organisms
control the important aspects of their own development. According
to Apter [3, page 44], this simplification must be accepted as a nec-
essary evil, as long as the scope of the mathematical model is limited
to an isolated plant. Consequently, this chapter focuses on the mod-
eling and generation of growth sequences of herbaceous or non-woodyHerbaceous

plants plants, since internal control mechanisms play a predominant role in
their development. In contrast, the form of woody plants is determined
to a large extent by the environment, competition among branches and
trees, and accidents [164].

3.1 Levels of model specification

L-systems can be constructed with a variety of objectives in mind, rang-
ing from a general classification of branching structures to detailed mod-
els suitable for image synthesis purposes. Accordingly, the L-systems
presented in this chapter are specified at three levels of detail. The most
abstract level, called partial L-systems, employs the notation of nonde-Partial

L-systems terministic OL-systems to define the realm of possibilities within which
structures of a given type may develop. Partial L-systems capture the
main traits characterizing structural types, and provide a formal basis
for their classification. Control mechanisms that resolve nondetermin-
ism are introduced in the next level, termed L-system schemata.1 TheL-system

schemata topology of individual plants and temporal aspects of their develop-
ment are described at this level. Schemata are of particular interest
from a biological point of view, as they provide an insight into the
mechanisms that control plant development in nature. The geomet-
ric aspects are added in complete L-systems that include informationComplete

L-systems concerning growth rates of internodes, the values of branching angles,
and the appearance of organs. The difference between all three levels is
illustrated using models of a single-flower shoot as a running example.

3.1.1 Partial L-systems

Consider the development of a shoot which, after a period of vegetativeSingle-flower
shoot growth, produces a single flower. The partial L-system is given below.

ω : a
p1 : a → I[L]a
p2 : a → I[L]A
p3 : A → K

(3.1)

The lower-case symbol a represents the vegetative apex, while the upper-
case A is the flowering apex, capable of forming reproductive organs.

1In the literature, the term “scheme” is also used to denote the class of L-systems
with the same alphabet and productions, but with different axioms [62, page 54].
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Figure 3.1: Single-flower shoot

A derivation step corresponds to a plastochron, defined as the time
interval between the production of successive internodes by the apex.
At each step apex a has a choice of forming either leaf L, internode I
and new apex a (production p1), or forming the same structures and
transforming itself into a flowering apex A (p2), which subsequently
creates flower K (p3). Once this transformation or developmental switch
has taken place it cannot be reversed, since there is no rule allowing
the transformation of A to a. Examples of strings generated by the
L-system specified in equation (3.1) are given below.

a a a
I[L]A I[L]a I[L]a
I[L]K I[L]I[L]A I[L]I[L]a
I[L]K I[L]I[L]K I[L]I[L]I[L]A

I[L]I[L]K I[L]I[L]I[L]K
I[L]I[L]I[L]K

A diagrammatic representation of a single-flower inflorescence is shown
in Figure 3.1.

3.1.2 Control mechanisms in plants

A partial L-system does not specify the moments in which develop- L-system
schematamental switches occur. The timing of these switches is specified at the

level of L-system schemata, which incorporate mechanisms that con-
trol plant development. In biology, these mechanisms are divided into
two classes depending on the way information is transferred between Lineage vs.

interactionmodules. The term lineage (or cellular descent) refers to the transfer
of information from an ancestor cell or module to its descendants. In
contrast, interaction is the mechanism of information exchange between
neighboring cells (for example, in the form of nutrients or hormones).
Within the formalism of L-systems, lineage mechanisms are represented
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by context-free productions found in OL-systems, while the simulation
of interaction requires the use of context-sensitive 1L-systems and 2L-
systems.2 Several specific mechanisms are listed below. Although they
are described from the modeling perspective, a relation to physiological
processes observed in nature can often be found.

Stochastic mechanism

The simplest method for implementing a developmental switch is to
use a stochastic L-system. In this case the vegetative apex a has a
probability π1 of staying in the vegetative state, and π2 of transforming
itself into a flowering apex A.

ω : a
p1 : a

π1→ I[L]a
p2 : a

π2→ I[L]A

p3 : A
1→ K

The probability distribution (π1, π2) is found experimentally, with π1 +
π2 = 1.

The effect of environment

Many plants change from a vegetative to a flowering state in response
to environmental factors such as temperature or the number of day-
light hours. Such effects can be modeled using one set of productions
(called a table) for some number of derivation steps, then replacing itTable

L-systems by another set:

Table 1 Table 2
ω : a p1 : a → I[L]A
p1 : a → I[L]a p2 : A → K

The concept of table L-systems (TOL-systems) was introduced and
formalized by Rozenberg [62, 127]. Note that the use of tables provides
only a partial solution to the problem of specifying the switching time,
since a control mechanism external to the L-system is needed to select
the appropriate table.

Delay mechanism

The delay mechanism operates under the assumption that the apex
undergoes a series of state changes that postpone the switch until a
particular state is reached.

2The clarity of this dichotomy is somewhat obscured by parametric OL-systems,
which can simulate the operation of context-sensitive L-systems using an infinite
set of parameter values.
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This is captured by the following L-system in the case of a single-flower
shoot.

ω : a0

pi : ai → I[L]ai+1 0 ≤ i ≤ n − 1
pn : an → I[L]A
pn+1 : A → K

According to this model, the apex counts the leaves it produces. While
it may seem strange that a plant would count, it is known that some
plant species produce a fixed number of leaves before they start flow-
ering.

Accumulation of components

A developmental mechanism based on the accumulation of components
is similar to that of delay, but emphasizes the physiological nature of
the counting process. According to this approach, counting is achieved
by a monotonic increase or decrease in the concentration of certain cell
components. This process can be captured by the following parametric
L-system:

ω : a(0)
p1 : a(c) : c < C → I[L]a(c + ∆c)
p2 : a(c) : c ≥ C → I[L]A
p3 : A : ∗ → K

(3.2)

The parameter c indicates current concentration of the controlling com-
ponents in the apex a. In each derivation step, this concentration is
increased by a constant ∆c. The developmental switch occurs when
the concentration reaches the threshold value C.

Development controlled by a signal

In many plants, the switch from a vegetative to a flowering state is
caused by a flower-inducing signal transported from the basal leaves
towards the apex. The time of signal initiation is determined using
one of the previously described methods, for example by counting. A
sample L-system is given below.

ω : D(1)a(1)
p1 : a(i) : i < m → a(i + 1)
p2 : a(i) : i = m → I[L]a(1)
p3 : D(i) : i < d → D(i + 1)
p4 : D(i) : i = d → S(1)
p5 : S(i) : i < u → S(i + 1)
p6 : S(i) : i = u → ε
p7 : S(i) < I : i = u → IS(1)
p8 : S(i) < a(j) : ∗ → I[L]A
p9 : A : ∗ → K
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The apex a produces internodes I and leaves L on the main axis (p2).
The time between the production of two consecutive segments, or the
plastochron of the main axis, is equal to m derivation steps (p1). After
a delay of d steps (p3), a signal S is sent from the plant base towards
the apices (p4). This signal is transported along the main axis with
a delay of u steps per internode I (p5,p7). Production p6 removes the
signal from a node after it has been transported along the structure
(ε stands for the empty string). When the signal reaches the apex, a is
transformed into flowering state A (p8) which yields flower K (p9). Note
that the signal has to propagate faster than one node per plastochron
(u < m), otherwise it would not be able to catch up with the apex. The
above processes are illustrated by the following developmental sequence,
for d = 4, m = 2 and u = 1.

D(1)a(1)
D(2)a(2)
D(3)I[L]a(1)
D(4)I[L]a(2)
S(1)I[L]I[L]a(1)
IS(1)[L]I[L]a(2)
I[L]IS(1)[L]I[L]a(1)
I[L]I[L]IS(1)[L]a(2)
I[L]I[L]I[L]A
I[L]I[L]I[L]K

Although the above model may appear unnecessarily complicated, sig-
nals are indispensable in the simulation of complex flowering sequences
discussed later.

3.1.3 Complete models

The L-systems considered so far are not directly suitable for image syn-
thesis purposes. To this end, they must be completed with geometric
information. The relation between an L-system scheme and a corre-
sponding complete L-system is discussed using the model of crocuses
shown in Figure 3.2 as an example.

The development is controlled using a delay expressed as an accu-Crocus
mulation mechanism (equation (3.2)). In contrast to L-system schemes
in which symbols represent module types, the L-system in Figure 3.2
is specified in terms of turtle symbols. Production p1 describes the cre-
ation of successive internodes F and leaves L by the vegetative apex a.
The leaves branch from the stem at an angle of 30◦ and spiral around
the main axis with a divergence angle equal to 137.5◦ (see Chapter 4).
Productions p2 and p3 describe the developmental switch and the cre-
ation of flower K taking place respectively in steps Ta and Ta+1. Pro-
ductions p4 and p5 capture the development of leaves and flowers until
they reach their final shapes TL and TK steps after creation. For each
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#define Ta 7 /* developmental switch time */
#define TL 9 /* leaf growth limit */
#define TK 5 /* flower growth limit */
#include L(0),L(1),...,L(TL) /* leaf shapes */
#include K(0),K(1),...,K(TK) /* flower shapes */

ω : a(1)
p1 : a(t) : t<Ta → F(1)[&(30)∼L(0)]/(137.5)a(t+1)
p2 : a(t) : t=Ta → F(20)A
p3 : A : * → ∼K(0)
p4 : L(t) : t<TL → L(t+1)
p5 : K(t) : t<TK → K(t+1)
p6 : F(l) : l<2 → F(l+0.2)

Figure 3.2: Crocuses
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branch
main apex main apex
terminates continues

all some all some
lateral lateral lateral lateral
apices apices apices apices

terminate continue terminate continue
terminal sympodial monopodial polypodial

Table 3.1: Basic growth patterns of branching structures

value of parameter t, the corresponding organ shapes L(t) and K(t) are
modeled using bicubic patches incorporated into the plant structure as
described in Section 5.1. Production p6 specifies the gradual elongation
of internodes.

3.2 Branching patterns

The partial L-system in equation (3.1) and the related schemata employSubapical
growth subapical growth mechanisms in which new branches are created exclu-

sively by apices. All herbaceous plants develop this way. The archi-
tecture of a branching structure is to a large extent determined by the
relationships between terminal and continuing apices. While a contin-
uing apex produces branches again and again, a terminal one either
gives rise to an appendage such as a flower or dies. The possible com-
binations are listed in Table 3.1. Of the four terms assigned to these
possibilities, two are commonly used in biology, namely, sympodial and
monopodial, while the other two terms are introduced here to denote
the remaining cases, usually not characterized in the literature.

The above branching patterns can be represented conveniently usingExpression
using
L-systems

partial bracketed L-systems. Let A,B,C denote continuing apices, X
a terminal apex, and I an internode. The terminal and sympodial
patterns are characterized by rules of the form

A → I[B]n[X]mX,

with n = 0, m > 0 in the case of terminal patterns and n > 0, m ≥ 0
in the case of sympodial patterns. The important property is that the
main apex terminates its development in all these cases.

Monopodial and polypodial patterns have rules of the form

A → I[B]n[X]mC,

with n = 0, m > 0 in the case of monopodial patterns and n > 0,
m ≥ 0 in the case of polypodial ones. In these cases, it is important
that the apex remains active.
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The terms defined here apply to branching structures in general,
whether they only produce vegetative organs (branches and leaves) or
reproductive organs as well. In the latter case, the terminal organs
develop from flower buds to flowers to fruits but do not give rise to
vegetative structures (there are exceptions to this statement but they
can be neglected here).

3.3 Models of inflorescences

The following discussion focuses on the modeling of compound flowering
structures or inflorescences. In some cases an entire shoot system can
be considered an inflorescence, in others only some of the branches
bear flowers and are inflorescences. Inflorescence architecture is an
elaboration of branching structures in general.

In the domain of botanical applications of L-systems, the study Classification
of inflorescences has played a particularly visible role [44, 45, 46, 47,
77, 86]. Unfortunately, the terms used for the various inflorescence
types are not uniform in the literature. Besides a purely morphological
terminology, attempts have been made to construct a “typological”
terminology, expressing the “essential” features of flowering structures
[144, 145, 157, 158]. However, these terms are not generally accepted
[12]. A compromise has been proposed by D. and U. Müller-Doblies
[100], which serves as a basis for the classification that guides this
presentation.

3.3.1 Monopodial inflorescences

Simple racemes (open)

Racemes are characteristically monopodial inflorescences; a shoot has
lateral apices with terminal structures and a main apex that continues
to development. A raceme is open if the main apex does not form a
flower. The partial L-system for this widely occurring type of inflores-
cence is:

ω : a
p1 : a → I[L]a
p2 : a → I[L]A
p3 : A → I[K]A

(3.3)

This system differs from that modeling a shoot with a single flower
(equation (3.1)) only in production p3. Here it is designed to repeatedly
produce lateral flowers (Figure 3.3), while in the previous system A
produces a single flower.
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a b

Figure 3.3: Open racemes: (a) elongated form, (b) planar form

Figure 3.4: Lily-of-the-valley
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The flowering sequence in open racemes is always acropetal (from Acropetal
sequencebase to top). This can be observed after substituting production p3 in

the L-system in equation (3.3) with productions p
′
3 and p4, which use

indexed symbols Ki to denote subsequent stages of flower development.

p
′
3 : A → I[IK0]A

p4 : Ki → Ki+1, i ≥ 0

The indexed notation Ki → Ki+1 stands for a (potentially infinite)
set of productions K0 → K1, K1 → K2, K2 → K3,.... The developmen-
tal sequence begins as follows:

A
I[IK0]A
I[IK1]I[IK0]A
I[IK2]I[IK1]I[IK0]A
I[IK3]I[IK2]I[IK1]I[IK0]A
· · ·

At each developmental stage the inflorescence contains a sequence Lily-of-the-
valleyof flowers of different ages. The flowers newly created by the apex are

delayed in their development with respect to the older ones situated at
the stem base. Graphically, this effect is illustrated by the model of
a lily-of-the-valley shown in Figure 3.4. The following quotation from
d’Arcy Thompson [143] applies:

A flowering spray of lily-of-the-valley exemplifies a growth-
gradient, after a simple fashion of its own. Along the stalk
the growth-rate falls away; the florets are of descending age,
from flower to bud; their graded differences of age lead to
an exquisite gradation of size and form; the time-interval
between one and another, or the “space-time relation” be-
tween them all, gives a peculiar quality – we may call it
phase-beauty – to the whole.

Another example of “phase beauty” can be seen in the shoot of shep- Capsella
herd’s purse (Capsella bursa-pastoris) shown in Figure 3.5. Productions
p1, p2 and p3 describe the activities of the apex in the vegetative and
flowering states, in accordance with the L-system in equation (3.3). The
developmental switch is implemented using a delay mechanism. Pro-
ductions p4 and p5 capture the linear elongation of internodes in time,
while p6 and p7 describe the gradual increase of the angle at which
the flower stalks branch from the main stem. Productions p8, p9 and
p11 specify the shapes of leaves L, flower petals K and fruits X using
developmental surface models discussed in Section 5.2. Production p10

controls the flowering time. Symbol % in the successor of production
p11 simulates the fall of petals by cutting them off the structure at
the time of fruit formation. The default value of the angle increment
corresponding to the symbol + with no parameter is 18◦.
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ω : I(9)a(13)
p1 : a(t) : t>0 → [&(70)L]/(137.5)I(10)a(t-1)
p2 : a(t) : t=0 → [&(70)L]/(137.5)I(10)A
p3 : A : * → [&(18)u(4)FFI(10)I(5)X(5)KKKK]

/(137.5)I(8)A
p4 : I(t) : t>0 → FI(t-1)
p5 : I(t) : t=0 → F
p6 : u(t) : t>0 → &(9)u(t-1)
p7 : u(t) : t=0 → &(9)
p8 : L : * → [{.-FI(7)+FI(7)+FI(7)}]

[{.+FI(7)-FI(7)-FI(7)}]
p9 : K : * → [&{.+FI(2)--FI(2)}]

[&{.-FI(2)++FI(2)}]/(90)
p10 : X(t) : t>0 → X(t-1)
p11 : X(t) : t=0 → ∧(50)[[-GGGG++[GGG[++G{.].].].

++GGGG.--GGG.--G.}]%

Figure 3.5: Development of Capsella bursa-pastoris. Every fourth derivation
step is shown.
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Figure 3.6: Apple twig

Simple raceme (closed)

The inflorescence of an apple tree (Figure 3.6) provides an example of
a closed raceme. In this case, the main apex eventually terminates its
development and produces a terminal flower (Figure 3.7). The corre-
sponding partial L-system is given below.

ω : a
p1 : a → I[L]a
p2 : a → I[L]A
p3 : A → I[K]A
p4 : A → K

Developmental switches are associated with two symbols, a and A.
Thus, in order to obtain an L-system scheme it is necessary to specify
how both of these switches will be controlled.

The flowering sequence is usually acropetal but could also be basi-
petal, i.e., progressing downward after the formation of the terminal
flower on the main axis. In the latter case a basipetal signal, as dis-
cussed in Section 1.8, can be applied to induce the transformation of
dormant flower buds into flowers.
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a b

Figure 3.7: Closed racemes: (a) elongated form, (b) planar form

Compound raceme (open dibotryoid)

Racemes can also occur on complex branching structures. The sim-
plest of these inflorescences is one with open racemes on the first order
branches as well as on the main axis (Figure 3.8a). This two-level com-
pound structure (thus dibotryoid) is described by the following partial
L-system.

ω : a
p1 : a → I[L]a
p2 : a → I[L]A
p3 : A → I[L][b]A
p4 : A → I[L][b]B
p5 : b → I[L]b
p6 : b → I[L]B
p7 : B → I[K]B

(3.4)

Three developmental transformations are necessary: the first for the
change from leaf to branch creation along the main axis (production p2),
the second for the switch from branching to lateral flower creation on
the main axis (p4), and the third for the transition from leaf to lateral
flower formation along the first-order branches (p6). Each branch is
subtended by a leaf, which is why productions p3 and p4 specify two
appendages L and b. Branches with flowers K need not have subtending
leaves, which is reflected in production p7.

Within each component raceme, the flowering sequence is alwaysSingle-signal
model acropetal, but the timing of switches has a crucial impact on the over-

all flowering sequence and appearance of the plant. For example, let us
assume that the switch from leaf to branch production is controlled by
a delay, while the remaining two switches are caused by an acropetal
flower-inducing signal (representing the hormone florigen). Such a de-
velopment is captured by L-system 3.1 (see below). Initially, the veg-
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a b

Figure 3.8: Dibotryoids: (a) open, (b) closed

#define d 13 /* delay for sending florigen */
#define e 3 /* delay for creating branches */
#define m 2 /* plastochron - main axis */
#define n 3 /* plastochron - lateral axis */
#define u 1 /* signal delay - main axis */
#define v 1 /* signal delay - lateral axis */

ω : S(0)a(1,0)
p1 : a(t,c) : t<m → a(t+1,c)
p2 : a(t,c) : (t=m)&(c<e)→ I(0,u)[L]a(1,c+1)
p3 : a(t,c) : (t=m)&(c=e)→ I(0,u)[L][b(1)]a(1,c)
p4 : b(t) : t<n → b(t+1)
p5 : b(t) : t=n → I(0,v)[L]b(1)
p6 : S(t) : * → S(t+1)
p7 : S(t) < I(i,j) : t=d → I(1,j)
p8 : I(i,j) : (0<i)&(i<j)→ I(i+1,j)
p9 : I(i,j) < I(k,l) : (i=j)&(k=0)→ I(1,l)
p10: I(i,j) < a(k,l) : i>0 → I[L][b(1)]B
p11: I(i,j) < b(k) : i>0 → I[L]B
p12: B : * → I[K]B

L-system 3.1: A model of dibotryoids
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etative apex a creates internodes I and leaves L with plastochron m
(productions p1 and p2). After the creation of e leaves a developmen-
tal switch occurs, and apex a starts creating branches with the same
plastochron (p3). The change of state is indicated by the value of the
second parameter in the module a(t, c), which is now equal to e. The
lateral apices b create internodes and leaves with plastochron n (p4 and
p5). After a delay of d steps from the beginning of the simulation (p6),
the flowering signal is introduced to the basal internode (p7), as indi-
cated by a non-zero value of the first parameter in the module I(i, j).
The signal is passed along an axis at the rate of j steps per internode
(p8 and p9), where j = u for the main axis and j = v for the lateral
axes. These rates are assigned to internodes by productions p2, p3 and
p5. When the signal reaches an apex (either a or b), the apex is trans-
formed into flowering state B (p10 and p11). From then on, new flowers
K are produced in each derivation step (p12).

In order to analyze the plant structure and flowering sequence re-Model analysis
sulting from the above development, let Tk denote the time at which
apex b of the k-th lateral axis is transformed into the flowering state,
and lk denote the length of this axis (expressed as the number of in-
ternodes) at the transformation time. It is assumed here that the first e
leaves count as lateral axes, thus k > e. Since it takes km time units to
produce k internodes along the main axis and lkn time units to produce
lk internodes on the lateral axis, we obtain:

Tk = km + lkn

On the other hand, the transformation occurs when the signal reaches
the apex. The signal is sent d time units after the development starts.
It uses ku time units to travel through k zero-order internodes and lkv
time units to travel through lk first-order internodes:

Tk = d + ku + lkv

Solving the above system of equations for lk and Tk (and ignoring for
simplicity some inaccuracy due to the fact that this system does not
guarantee integer solutions), we obtain:

Tk = k
un − vm

n − v
+ d

n

n − v

lk = −k
m − u

n − v
+

d

n − v

In order to analyze the above solutions, let us first notice that the signal
transportation delay v must be less than the plastochron of the lateral
axes n, otherwise the signal would never reach the lateral apices. Under
this assumption, the sign of the expression ∆ = un−vm determines the
overall flowering sequence, which is acropetal for ∆ > 0 (Figure 3.9)
and basipetal for ∆ < 0 (Figure 3.10). If ∆ = 0, all flowering switches



3.3. Models of inflorescences 79

Figure 3.9: An acropetal flowering sequence in an open dibotryoid: m = 2,
n = 3, u = v = 1, ∆ = 0.5; derivation lengths: 15−18−21−24−27−30−33

occur simultaneously. The sign of the expression m − u determines
whether the vegetative part of the shoot is more developed at the base
(m − u < 0) or near the top of the structure (m − u > 0). Figure 3.11
shows a model of a member of the mint family that exhibits a basipetal
flowering sequence.

Compound racemes (closed dibotryoids)

This inflorescence type differs from the previous one only in that each
branch, including the main axis, bears a terminal flower (Figure 3.8b).
A partial L-system can be obtained from that of equation (3.4) by
adding one more production:

p8 : B → K
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Figure 3.10: A basipetal flowering sequence in an open dibotryoid: m = 2,
n = 5, u = 1, v = 3, ∆ = −0.5; derivation lengths: 16− 20− 24− 28− 32−
36 − 40
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Figure 3.11: A mint

Compound raceme (closed tribotryoid)

Racemic inflorescences can be compounded to a higher number of lev-
els. The following is a partial L-system for a closed tribotryoid inflo-
rescence, where closed racemes occur on second-order branches as well
as on the terminal portions of first-order branches and of the main axis
(Figure 3.12). The developmental process involves six developmental
transformations.

ω : a
p1 : a → I[L]a
p2 : a → I[L]A
p3 : A→ I[L][b]A
p4 : A→ I[L][b]B
p5 : b → I[L]b
p6 : b → I[L]B

p7 : B→ I[L][c]B
p8 : B→ I[L][c]C
p9 : c → I[L]c
p10 : c → I[L]C
p11 : C→ I[K]C
p12 : C→ K
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Figure 3.12: Closed tribotryoid

3.3.2 Sympodial inflorescences

Simple cymes (open)

In racemes, the apex of the main axis produces lateral branches and
continues to grow. In contrast, the apex of the main axis in cymes turns
into a flower shortly after a few lateral branches have been initiated.
Their apices turn into flowers as well, and second-order branches take
over. In time, branches of higher and higher order are produced. Thus,
the basic structure of a cymose inflorescence is captured by the partial
L-system:

ω : a
p1 : a → I[L]a
p2 : a → I[L]A
p3 : A→ I[A]K

(3.5)

As in the open raceme, there is a single symbol with alternative rules
which specify that the vegetative apex a may change into a flower-
producing apex A. Any one of the previously discussed mechanisms
is available for timing this decision. Figure 3.13a shows an open cyme
with branches curving in a spiral fashion, while Figure 3.13b shows one
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a b c

Figure 3.13: Open cymes: (a) spiral form, (b) zig-zag form, (c) double

with a zig-zag branching form.

Double cymes (open)

Frequently, not one but two lateral apices are produced under each
terminal apex as in Figure 3.13c. In this case the partial L-system is:

ω : a
p1 : a → I[L]a
p2 : a → I[L]A
p3 : A→ I[A][A]K

(3.6)

The two continuing lateral apices may develop at approximately
equal rates (with the same plastochron) or with different rates, giving
rise to asymmetric inflorescences. For example, the following L-system
scheme describes the development of rose campion (Lychnis coronaria) Lychnis
as analyzed by Robinson [126]:

ω : A7

p1 : A7→ I[A0][A4]IK0

p2 : Ai→ Ai+1, 0 ≤ i < 7
p3 : Ki→ Ki+1, i ≥ 0

Production p1 shows that at their creation time, the lateral apices
have different states A0 and A4. Consequently, the first apex requires
eight derivation steps to produce a flower and new branches, while the
second requires only four steps. Each flower undergoes a sequence of
changes, progressing from the bud stage to an open flower to a fruit.
This developmental sequence is illustrated in Figure 3.14. According to
production p1, the lateral apices branch at an angle of 45◦ and lie in a
plane perpendicular to that defined by the mother axis and its sibling.
Production p3 describes the linear elongation of internodes, while p4
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#include L(0),L(1),... /* leaf shapes */
#include K(0),K(1),... /* flower shapes */

ω : A(7)
p1 : A(t) : t=7→ FI(20)[&(60)∼L(0)]/(90)[&(45)A(0)]/(90)

[&(60)∼L(0)]/(90)[&(45)A(4)]FI(10)∼K(0)
p2 : A(t) : t<7→ A(t+1)
p3 : I(t) : t>0→ FFI(t-1)
p4 : L(t) : * → L(t+1)
p5 : K(t) : * → K(t+1)

Figure 3.14: Development of Lychnis coronaria
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a b c

Figure 3.15: Thyrsus: (a) spiral form, (b) zig-zag form, (c) double

and p5 capture the development of leaves and flowers over time. It is
interesting to note that at different developmental stages there are some
open flowers that have a relatively uniform distribution over the entire
plant structure. This is advantageous to the plant since it increases the
time span over which seeds will be produced.

Cymes (closed)

Sympodial inflorescences that produce a terminal flower at some point
during their development are called closed cymes. They result from the
addition of production

p4 : A → K

to the L-systems specified in (3.5) and (3.6), which define open single
and open double cymes.

Thyrsus (closed)

A thyrsus is an inflorescence with branches of cymes borne on a monopo-
dially branching axis. Thus, it represents a mixed sympodial and
monopodial organization. Depending on the orientation of the flow-
ers, a distinction between a thyrsus with cymes in a spiral form and in
a zig-zag form can be made (Figure 3.15, a and b). Both of these types
are described by the following partial L-system:
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ω : a
p1 : a → I[L]a
p2 : a → I[L]A
p3 : A→ I[L][B]A
p4 : A→ K
p5 : B→ I[B]K
p6 : B→ K

In addition, a thyrsus may have double cymes (Figure 3.15c). In the
closed structure there are three developmental transformations. The
first represents the change from vegetative to flowering development on
the main axis (production p2). The second is necessary for the closure
of the main axis with a terminal flower (p4). Both switches are related
to the monopodial development of the main axis. The third transfor-
mation is responsible for the formation of the flowers that terminate
the development of the sympodial structures (p6).

3.3.3 Polypodial inflorescences

Panicle

The term polypodial is not used in the botanical literature but is coined
here to draw attention to the type of branching that represents con-
tinuing development of the main axis as well as of the lateral apices
of a branch. The corresponding inflorescence type is usually called a
panicle. The presence of two continuing apices at each new node is
expressed by the following production:

A → I[L][A]A

Since there can be nodes near the base of the plant that do not bear
branches, the usual initial rules are included to model the transition
from a purely vegetative to a flowering state. The resulting partial
L-system is:

ω : a
p1 : a → I[L]a
p2 : a → I[L]A
p3 : A→ I[L][A]A
p4 : A→ K

An example of a paniculate structure is shown in Figure 3.16. Note
the presence of higher order branching and the lack of terminal racemes.
Due to the repetitive application of production p3 at various levels of
branching, the resulting structure is highly self-similar. The model in-
cludes only two types of developmental transformations: the switch
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Figure 3.16: Panicle (elongated form)

from purely vegetative growth to the formation of the branching struc-
ture (production p2), and the creation of terminal flowers (p4). The
timing of the last production determines the flowering sequence of the
plant. Two possible control mechanisms will be examined in detail, us-
ing developmental models of the branching part of wall lettuce (Mycelis
muralis) as examples.

The development of Mycelis is difficult to model for two reasons. Mycelis
First, the plant exhibits a basipetal flowering sequence, which means
that flowering starts at the top of the plant and proceeds downwards.
Secondly, at some developmental stages the plant has an acrotonic
structure, where the upper branches are more developed than the lower
ones. Both phenomena are in a sense counter-intuitive, since it would
seem that the older branches situated near the plant base should start
growing and producing flowers before the younger ones at the plant
top. To explain these effects, several models were proposed and for-
mally analyzed by Janssen and Lindenmayer [77]. Their model II is
restated here as parametric L-system 3.2.

The axiom consists of three components. Modules F and A(0) rep- Model II
resent the initial segment and the apex of the main axis. Module I(20)
is the source of a signal representing florigen. In nature, florigen is
sent towards the apex by leaves located at the plant base, which is not
included in this model.

The developmental process consists of two phases that take place
along the main axis and are repeated recursively in branches of higher
orders. First, the main axis is formed in a process of subapical growth
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#include O /* flower shape specification */
#ignore / + ∼ O

ω : I(20)FA(0)
p1 : S < A(t) : * → T(0)∼O
p2 : A(t) : t>0→ A(t-1)
p3 : A(t) : t=0→ [+(30)G]F/(180)A(2)
p4 : S < F : * → FS
p5 : F > T(c) : * → T(c+1)FU(c-1)
p6 : U(c) < G : * → I(c)FA(2)
p7 : I(c) : c>0→ I(c-1)
p8 : I(c) : c=0→ S
p9 : S : * → ε
p10 : T(c) : * → ε

L-system 3.2: Mycelis muralis – Model II

specified by production p3. The apex produces consecutive segments
F at the rate of one segment every three derivation steps (the delay is
controlled by production p2), and initiates branches G positioned at an
angle of 30◦ with respect to the main axis. The symbol G is interpreted
here in the same way as F . At this stage, the branches do not develop
further, which simulates the effect of apical dominance or the inhibition
of branch development during the active production of new branches
by the apex.

After a delay of 20 derivation steps, counted using production p7,
an acropetal flower-inducing signal S is sent by production p8. Produc-
tion p4 transports S across the segments at the rate of one internode
per step. Since new internodes are produced by the apex at a three
times slower rate, the signal eventually reaches the apex. At this point,
the second developmental phase begins. Production p1 transforms apex
A(t) into a bud O. Further branch production is stopped and a signal
T (c) is sent towards the base in order to enable the development of
lateral branches. Parameter c is incremented by production p5 each
time signal T (c) traverses an internode. Subsequently, production p6

introduces the value of parameter c into the corresponding branches,
using module U(c) as a carrier. The successor of production p6 has
the same format as the axiom, thus module I(c) determines the delay
between the initiation of branch development and time signal S, sent
to terminate further internode creation. This delay c is smallest for
the top branches and increases towards the plant base. Consequently,
parameter c can be interpreted as the growth potential of the branches,
allowing lower branches to grow longer than the higher ones. On the
other hand, the development of the upper branches starts sooner, thus
in some stages they will be more developed than the lower ones, and
the flowering sequence will progress downwards, corresponding to ob-
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#include K /* flower shape specification */
#consider M S T V

ω : I(20)FA(0)
p1 : S < A(t) : * → TV K
p2 : V < A(t) : * → TV K
p3 : A(t) : t>0 → A(t-1)
p4 : A(t) : t=0 → M[+(30)G]F/(180)A(2)
p5 : S < M : * → S
p6 : S > T : * → T
p7 : T < G : * → FA(2)
p8 : V < M : * → S
p9 : T > V : * → W
p10: W : * → V
p11: I(t) : t>0 → I(t-1)
p12: I(t) : t=0 → S

L-system 3.3: Mycelis muralis – Model III

servations of the real plant [77].
A diagrammatic developmental sequence of Mycelis muralis simu-

lated using L-system 3.2 is shown in Figure 3.17. Initially, the segments
are shown as bright green. The passage of florigen S turns them purple,
and the lifting of apical dominance changes their color to dark green.
Figure 3.18 represents a three-dimensional rendering of the same model.
The three-dimensional structure differs from the two-dimensional di-
agram only in details. The angle value associated with the module
“/” in production p3 has been changed to 137.5◦, resulting in a spiral
arrangement of lateral branches around the mother axis. The leaves
subtending branches have been included in the model, and flowers have
been assumed to undergo a series of changes from bud to open flower
to fruit.

Another developmental model of Mycelis, referred to here as model Model III
III, is given by L-system 3.3. The initial phases of development are the
same as in model II. First, apex A creates the main axis and initiates
lateral branches (productions p3 and p4). Symbol M in the successor of
production p4 marks consecutive branching points. After a delay of 20
steps (ω) counted by production p11, flowering signal S is generated at
the inflorescence base (p12) and sent up along the main axis (p5). Upon
reaching the apex, S induces its transformation into a terminal flower
K, and initiates two basipetal signals T and V (p1). The basipetal
signals also can be initiated by production p2, which is needed for the
proper timing of signals in the topmost lateral branch. Signal T prop-
agates basipetally at the rate of one internode per derivation step (p6)
and lifts apical dominance, thus allowing the lateral branches to grow
(p7). The presence of the second basipetal signal V is the distinctive
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Figure 3.17: Development of Mycelis muralis
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Figure 3.18: A three-dimensional rendering of the Mycelis model

feature of model III. Its role is to enable the formation of flowers on
the lateral branches by generating the flowering signal S at their bases
(p8). Since signal V propagates down the main axis at the rate of one
internode per two derivation steps (p9, p10), the interval between the
lifting of apical dominance by signal T and induction of flowering signal
S by signal V increases linearly towards the inflorescence base. This
allows the lower branches to grow longer than the upper ones, resulting
in a structure that is more developed near the base than near the apex
in later developmental stages.

This entire control process repeats recursively for each axis: its apex
is transformed into a flower by signal S, the growth of lateral axes is
successively enabled by signal T , and the second basipetal signal V is
sent to induce the flowering signal S in the next-order axes. Conse-
quently, a basipetal flowering sequence is observed along all axes of the
panicle.

Model II controls the flowering on lateral branches using growth Biological
relevancepotential c accumulated by signal T on its way down, while model

III employs the time interval between signals T and V for the same
purpose. Since both models produce identical developmental sequences,
it is not possible to decide which one is more faithful to nature without
gathering additional data related to plant physiology. Nevertheless, the
models clearly indicate that the flowering sequence of Mycelis cannot
be explained simply in terms of two commonly recognized mechanisms,
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n=10, δ = 60◦

#include K /* flower shape specification */

ω : A∼K
p1 : A : * → [-/∼K][+/∼K]I(0)/(90)A
p2 : I(t) : !(t=2) → FI(t+1)
p3 : I(t) : t=2 → I(t+1)[-FFA][+FFA]

Figure 3.19: Lilac inflorescences
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Figure 3.20: Geometry of a lilac inflorescence: (a) the decussate branching
pattern, (b) the inflorescence skeleton without flowers

the flowering signal and the lifting of apical dominance. Another factor,
whether it is an accumulated delay or a third signal, is needed. The
mathematical models bring forward evidence and assist in formulating
plausible hypotheses related to the control mechanisms that may be
employed by nature. The final answer will require further study of the
real plant.

The models of Mycelis employ relatively complicated control pro- Lilac
cesses to explain the developmental sequence of a plant. On the other
hand, if only a static image of a panicle in a particular developmental
stage is needed, much simpler L-systems can be used. The L-system
that generates the lilac inflorescences shown in Figure 3.19 is an ex-
ample. Production p1 describes the subapical development of an axis.
Production p2 models linear elongation of internodes in time and in-
troduces a delay before p3 creates the lateral axes. The rotation of the
apex by 90◦ (p1) results in a decussate branching pattern with consec-
utive pairs of (n + 1)-order axes lying in the planes that pass through
the n-order axis and are perpendicular to each other (Figure 3.20). A
scene including lilac inflorescences is shown in Figure 3.21.

3.3.4 Modified racemes

There are four frequently encountered types of inflorescences that are
morphological modifications of racemes. Their mature forms are of a
special kind and need to be specified separately.



94 Chapter 3. Developmental models

Figure 3.21: The garden of L
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a b

Figure 3.22: Umbels: (a) simple, (b) compound

Umbel

An umbel is characterized by more than two internodes attached to a
single node, resulting in a typical umbrella-like shape. In a simple um-
bel there are flowers at the ends of the lateral internodes (Figure 3.22a),
while in compound umbels the branching pattern is repeated recursively
a certain number of times (Figure 3.22b). The partial L-system for a
simple umbel is

ω : A
p1 : A → I[IK]n

and for a compound umbel of recursion depth two is

ω : A
p1 : A → I[IB]kB
p2 : B → I[IC]lC
p3 : C → I[IK]m

This type of inflorescence is commonly found in the family Umbelliferae.
For example, Figure 3.23 presents a model of a wild carrot. Note that Wild carrot
the size of leaves decreases towards the top of the plant, producing a
phase effect similar to that observed in simple racemes. In contrast, the
most developed inflorescence is placed at the top of the plant, indicating
developmental control by a hormone similar to that observed in mints
(Figure 3.11).

Spike

An elongated raceme with closely packed flowers is called a spike. Many
grasses and sedges have this kind of inflorescence (Figure 3.24a). See
Figure 4.17 (page 117) for a realistic model.
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Figure 3.23: Wild carrot

Spadix

A fleshy elongated raceme is called a spadix, and is frequently found in
the family Araceae (Figure 3.24b).

Capitulum

A fleshy spherical or disk-shaped raceme is called a capitulum or “head.”
The sunflower head is an inflorescence of this kind, the oldest flowers be-
ing at the margin and the youngest at the center (Figure 3.24c). Mem-
bers of the family Compositae commonly have this type of structure.
One characteristic feature is the spatial arrangement of components,
such as flowers or seeds, which form early discernible spiral patterns. A
detailed description of these patterns is presented in the next chapter.
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a b c

Figure 3.24: Modified racemes: (a) spike, (b) spadix, (c) capitulum





Chapter 4

Phyllotaxis

The regular arrangement of lateral organs (leaves on a stem, scales on
a cone axis, florets in a composite flower head) is an important aspect
of plant form, known as phyllotaxis. The extensive literature generated
by biologists’ and mathematicians’ interest in phyllotaxis is reviewed
by Erickson [36] and Jean [78]. The proposed models range widely from
purely geometric descriptions (for example, Coxeter [17]) to complex
physiological hypotheses tested by computer simulations (Hellendoorn
and Lindenmayer [59], Veen and Lindenmayer [151], Young [163]). This
chapter presents two models suitable for the synthesis of realistic images
of flowers and fruits that exhibit spiral phyllotactic patterns.

Both models relate phyllotaxis to packing problems. The first oper-
ates in a plane and was originally proposed by Vogel [154] to describe
the structure of a sunflower head. A further detailed analysis was given
by Ridley [124, 125]. The second model reduces phyllotaxis to the
problem of packing circles on the surface of a cylinder. Its analysis was
presented by van Iterson [75] and reviewed extensively by Erickson [36].

The area of phyllotaxis is dominated by intriguing mathematical
relationships. One of them is the “remarkable fact that the numbers of
spirals which can be traced through a phyllotactic pattern are predom-
inantly integers of the Fibonacci sequence” [36, p. 54]. For example,
Coxeter [17] notes that the pineapple displays eight rows of scales slop-
ing to the left and thirteen rows sloping to the right. Furthermore, it is
known that the ratios of consecutive Fibonacci numbers Fk+1/Fk con-
verge towards the golden mean τ = (

√
5 + 1)/2. The Fibonacci angle

360◦τ−2, approximately equal to 137.5◦, is the key to the first model
discussed in this chapter.
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nr       n   ∼ √            

n   1   +

137 5     .         °
n   2   +

137 5     .         °

#define a 137.5 /* divergence angle */
#include D /* disk shape specification */

ω : A(0)
p1 : A(n) : * → +(a)[f(n∧0.5)∼D]A(n+1)

Figure 4.1: Pattern of florets in a sunflower head, according to Vogel’s for-
mula

4.1 The planar model

In order to describe the pattern of florets (or seeds) in a sunflower head,Vogel’s formula
Vogel [154] proposed the formula

φ = n ∗ 137.5◦, r = c
√

n, (4.1)

where:

• n is the ordering number of a floret, counting outward from the
center. This is the reverse of floret age in a real plant.

• φ is the angle between a reference direction and the position vec-
tor of the nth floret in a polar coordinate system originating at
the center of the capitulum. It follows that the divergence an-
gle between the position vectors of any two successive florets is
constant, α = 137.5◦.

• r is the distance between the center of the capitulum and the
center of the nth floret, given a constant scaling parameter c.
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a b c

Figure 4.2: Generating phyllotactic patterns on a disk. These three patterns
differ only by the value of the divergence angle α, equal to (a) 137.3◦, (b)
137.5◦ (the correct value), and (c) 137.6◦.

The distribution of florets described by formula (4.1) is shown in Fig-
ure 4.1. The square-root relationship between the distance r and the Model

justificationfloret ordering number n has a simple geometric explanation. Assum-
ing that all florets have the same size and are densely packed, the total
number of florets that fit inside a disc of radius r is proportional to
the disk area. Thus, the ordering number n of the most outwardly
positioned floret in the capitulum is proportional to r2, or r ∼ √

n.
The divergence angle of 137.5◦ is much more difficult to explain.

Vogel [154] derives it using two assumptions.

• Each new floret is issued at a fixed angle α with respect to the
preceding floret.

• The position vector of each new floret fits into the largest existing
gap between the position vectors of the older florets.

Ridley [125] does not object to these basic assumptions, but indi-
cates that they are insufficient to explain the origin of the Fibonacci
angle, and points to several arbitrary steps present in Vogel’s deriva-
tion. He describes the main weakness as follows:

While it is reasonable to assume that the plant could con-
tain genetic information determining the divergence angle
to some extent, it is completely impossible for this alone to
fix the divergence angle to the incredible accuracy occurring
in nature, since natural variation in biological phenomena
is normally rather wide. For example, for the 55- and 89-
parastichies to be conspicuous, as occurs in most sunflower
heads, d must lie between 21

55
and 34

89
, a relative accuracy of

one part in 1869.

The critical role of the divergence angle α is illustrated in Figure 4.2.
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Figure 4.3: Close-up of a daisy capitulum

Although a comprehensive justification of Vogel’s formula may require
further research, the model correctly describes the arrangement of flo-
rets visible in actual capitula. The most prominent feature is two sets
of spirals or parastichies, one turning clockwise, the other counterclock-Parastichies
wise, which are composed of nearest neighboring florets. The number
of spirals in each set is always a member of the Fibonacci sequence; 21
and 34 for a small capitulum, up to 89 and 144 or even 144 and 233 for
large ones. For example, the capitulum of a daisy (Figure 4.3) exhibits
34 clockwise spirals and 21 counterclockwise spirals, with directions
determined by following the spirals outwards from the capitulum cen-
ter. In the image of a domestic sunflower capitulum (Figure 4.4), one
can discern 34 spirals running clockwise and 55 spirals running counter-
clockwise. The number of perceived spirals depends on the capitulum
size expressed in terms of the number of component florets. If the field
of attention is limited to a circle approximately 2/3 the size of the en-
tire sunflower capitulum in Figure 4.4, the number of discernible spirals
becomes 34 and 21.

Figure 4.4: Domestic sunflower head �
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#define S /* seed shape */
#define R /* ray floret shape */
#include M N O P /* petal shapes */

ω : A(0)
p1 : A(n) : * → +(137.5)[f(n∧0.5)C(n)]A(n+1)
p2 : C(n) : n <= 440 → ∼S
p3 : C(n) : 440 < n & n <= 565 → ∼R
p4 : C(n) : 565 < n & n <= 580 → ∼M
p5 : C(n) : 580 < n & n <= 595 → ∼N
p6 : C(n) : 595 < n & n <= 610 → ∼O
p7 : C(n) : 610 < n → ∼P
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The dependence of the number of parastichies on the size of the
field of attention is yet another intriguing aspect of spiral phyllotaxis,
as pointed out in the following excerpt from a letter by Alan Turing 1

quoted in [18]:

According to the theory I am working on now there is a
continuous advance from one pair of parastichy numbers to
another, during the growth of a single plant. . . . You will
be inclined to ask how one can move continuously from one
integer to another. The reason is this — on any specimen
there are different ways in which the parastichy numbers can
be reckoned; some are more natural than others. During the
growth of a plant the various parastichy numbers come into
prominence at different stages. One can also observe the
phenomenon in space (instead of in time) on a sunflower.
It is natural to count the outermost florets as say 21 + 34,
but the inner ones might be counted as 8 + 13. . . . I don’t
know any really satisfactory account, though I hope to get
one myself in about a year’s time.

A complete model of a flower head, suitable for realistic image syn-
thesis, should contain several organs of various shapes. This is easily
achieved by associating different surfaces with specific ranges of the in-
dex n. For example, consider the L-system that generates the sunflower
head (Figure 4.4). The layout of components is specified by produc-Sunflower head
tion p1, similar to that of the L-system in Figure 4.1. Productions p2

to p7 determine colors and shapes of components as a function of the
derivation step number. The entire structure shown in Figure 4.4 was
generated in 630 steps. Alternatively, random selection of similar sur-
faces could have been employed to prevent the excessive regularity of
the resulting image.

Other extensions to the basic model consist of varying organ orien-
tation in space and changing their altitude from the plane of the head
as a function of n. For example, the sunflower plants included in Fig-
ure 4.5 have flowers in four developmental stages: buds, young flowers
starting to open, open flowers and older flowers where the petals begin
to droop. All flowers are generated using approximately the same num-
ber of florets. The central florets are represented by the same surface at
each stage. The shape and orientation of surfaces representing petals
vary from one stage to another. The plants have been modeled as di-
botryoids, with a single signal inducing a basipetal flowering sequence,
as described in the previous chapter.

1To computer scientists, Alan Turing is best known as the inventor of the Turing
machine [146], which plays an essential role in defining the notion of an algorithm.
However, biologists associate Turing’s name primarily with his 1952 paper, “The
chemical basis of morphogenesis” [147], which pioneered the use of mathematical
models in the study of pattern formation and advocated the application of comput-
ers to simulate biological phenomena.
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Figure 4.5: Sunflower field
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Figure 4.6: Zinnias

The zinnias (Figures 4.6 and 4.7) illustrate the effect of changing aOther examples
petal’s altitude, size and orientation as a function of n. The height at
which a petal is placed decreases by a small amount as n increases. The
size of each successive petal is incremented linearly. The orientation is
also adjusted linearly by a small angle increment. Thus, petals with
small values of index n are placed more vertically, while petals with
larger indices n are more horizontal. Although the family Compositae
offers the most examples of phyllotactic patterns, the same model can
be applied to synthesize images of other flowers, such as water-lilies
(Figures 4.8 and 4.9) and roses (Figure 4.10).

Figure 4.7: Close-up of zinnias �



4.1. The planar model 107



108 Chapter 4. Phyllotaxis

Figure 4.8: Water-lily

Figure 4.9: Lily pond
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Figure 4.10: Roses

4.2 The cylindrical model

The spiral patterns evident in elongated organs such as pine cones, Basic model
fir cones and pineapples, can be described by models that position
components, in this case scales, on the surface of a cylinder. Van Iterson
[75] divides phyllotactic patterns on cylinders into simple and conjugate
ones. In the case of a simple arrangement, all components lie on a single
generative helix. In contrast, conjugate patterns consist of two or more
interleaved helices. This paper discusses simple phyllotactic patterns
only. They are generally characterized by the formula

φ = n ∗ α, r = const, H = h ∗ n, (4.2)

where:

• n is the ordering number of a scale, counting from the bottom of
the cylinder;

• φ, r and H are the cylindrical coordinates of the nth scale;

• α is the divergence angle between two consecutive scales (as in
the planar case, it is assumed to be constant); and

• h is the vertical distance between two consecutive scales (mea-
sured along the main axis of the cylinder).
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A parametric L-system that generates the pattern described by for-Implementation
using
L-systems

mula (4.2) is given in Figure 4.11. The operation of this L-system
simulates the natural process of subapical development characterized
by sequential production of consecutive modules by the top part of the
growing plant or organ. The apex A produces internodes f(h) along
the main axis of the modeled structure. Associated with each intern-
ode is a disk ∼D placed at a distance r from the axis. This offset is
achieved by moving the disk away from the axis using the module f(r),
positioned at a right angle with respect to the axis by &(90). The spi-
ral disk distribution is due to the module /(a), which rotates the apex
around its own axis by the divergence angle in each derivation step.

In the planar model, the constant divergence angle α = 137.5◦ isAnalysis of
model geometry found across a large variety of flower heads. The number of perceived

parastichies is determined by the capitulum size, and it changes as the
distance from the capitulum center increases. In contrast, a phyllotactic
pattern on the surface of a cylinder is uniform along the entire cylinder
length. The number of evident parastichies depends on the values of
parameters α and h. The key problem, both from the viewpoint of
understanding the geometry of the pattern and applying it to generate
synthetic images, is to express the divergence angle α and the vertical
displacement h as a function of the numbers of evident parastichies en-
circling the cylinder in the clockwise and counterclockwise directions. A
solution to this problem was proposed by van Iterson [75] and reviewed
by Erickson [36]. Our presentation closely follows that of Erickson.

The phyllotactic pattern can be explained in terms of circles packed
on the surface of the cylinder. An evident parastichy consists of a
sequence of tangent circles, the ordering numbers of which form an
arithmetic sequence with difference m. The number m is referred to as
the parastichy order. Thus, the circles on the cylinder surface may be
arranged in two congruent 2-parastichies, five congruent 5-parastichies,
and so on. The angular displacement between two consecutive circles
in an m-parastichy is denoted by δm. By definition, δm belongs to the
range (−π, π] radians. The relation between the angular displacement
δm and the divergence angle α is expressed by the equation

δm = mα − ∆m2π, (4.3)

where ∆m is an integer called the encyclic number. It is the number
of turns around the cylinder, rounded to the nearest integer, which
the generative helix describes between two consecutive points of the
m-parastichy.

Usually, one can perceive two series of parastichies running in oppo-
site directions (Figure 4.11). The second parastichy satisfies an equa-
tion analogous to (4.3):

δn = nα − ∆n2π (4.4)

Consider the m- and n-parastichies starting at circle 0. In their paths
across the cylinder, they will intersect again at circle mn. Assume
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#define a 137.5281 /* divergence angle */
#define h 35.3 /* vertical displacement */
#define r 500 /* component offset from main axis */
#include D /* disk shape specification */

ω : A
p1 : A : * → [&(90)f(r)∼D]f(h)/(a)A

Figure 4.11: Parastichies on the surface of a cylinder and on the unrolled
cylinder. The L-system generates the cylindrical pattern.

that m and n are relatively prime; otherwise the phyllotactic pattern
would have to contain several circles lying at the same height H and,
contrary to the initial assumption, would not be simple. The circle
mn is the first point of intersection between the m-parastichy and the
n-parastichy above circle 0. Consequently, the path from circle 0 to mn
along the m-parastichy, and back to 0 along the n-parastichy, encircles
the cylinder exactly once. The section of m-parastichy between circles 0
and mn consists of n+1 circles (including the endpoints), so the angular
distance between the circles 0 and mn is equal to nδm. Similarly, the
distance between circles 0 and mn, measured along the n-parastichy,
can be expressed as mδn. As a result,

nδm − mδn = ±2π. (4.5)
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mn

0 0

mnh

βγ

mδn nδm

Figure 4.12: An opposite parastichy triangle (as in Erickson [36, Fig. 3.8]).
The base is formed by the circumference of the cylinder. The sides are
formed by the parastichies.

The signs in equation (4.5) correspond to the assumption that the spi-
rals encircle the cylinder in opposite directions; thus one of the values
δ is positive and the other one is negative. Substituting the right sides
of equations (4.3) and (4.4) for δm and δn yields

n∆m − m∆n = ±1. (4.6)

To further analyze the pertinent geometric relationships, the cylin-
der is cut along the vertical line passing through the center of circle 0
and “unrolled” (Figure 4.11). The two parastichies and the circumfer-
ence of the cylinder passing through point 0 form a triangle as shown
in Figure 4.12. The perpendicular to the base from point mn divides
this triangle into two right triangles. If d denotes the diameter of the
circles, then

(nδm)2 + (mnh)2 = (nd)2

and
(mδn)2 + (mnh)2 = (md)2.

The above system of equations can be solved with respect to h and d:

h =
√

(δ2
m − δ2

n)/(n2 − m2) (4.7)

d =
√

(n2δ2
m − m2δ2

n)/(n2 − m2) (4.8)

or, taking into consideration equation (4.5),

d =
√

2π(nδm + mδn)/(n2 − m2). (4.9)
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Figure 4.13: Patterns of tangent circles drawn on the surface of a cylinder
as a function of circle diameter

The problem is to determine values of δm and δn. They are not
simply functions of parameters m and n. Figure 4.13 shows that, for a
given m and n, the values of δm and δn can be chosen from a certain
range, yielding parastichies of different steepness. In order to determine
this range, observe that at its limits the phyllotactic pattern changes;
one previously evident parastichy disappears and another is formed.
Thus, at the range limit, three evident parastichies coexist. It follows
from Figure 4.13 that at one end of the range the third parastichy has
order |m−n|, and at the other end it has order (m+n). Three coexisting
parastichies imply that each circle is tangent to six other circles. In
other words, all circles lie in the vertices of a regular hexagonal grid,
as seen in Figure 4.13a and c. Consequently, the angle β + γ at vertex
mn (Figure 4.12) is equal to 2π/3. Expressing the base of the triangle
in terms of its two sides and their included angle results in

(2π)2 = (nd)2 + (md)2 − 2(nd)(md) cos(2π/3)

or, after simplification,

d = 2π/
√

m2 + mn + n2. (4.10)

Equations (4.9) and (4.10) yield

nδm + mδn = 2π(n2 − m2)/(m2 + mn + n2). (4.11)
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Solving the system of equations (4.5) and (4.11) with respect to δm

and δn produces

δm = π(m + 2n)/(m2 + mn + n2) (4.12)

and
δn = π(2m + n)/(m2 + mn + n2). (4.13)

Given the values of δm and δn, the divergence angle α can be found
from either equation (4.3) or (4.4), assuming that the encyclic numbers
∆m or ∆n are known. It follows from the definition that these numbers
are the smallest positive integers satisfying equation (4.6). A system-
atic method for solving this equation, based on the theory of continuous
fractions, is presented by van Iterson [75]. Erickson [36] points out that
in practice the solution can often be found by guessing. Another pos-
sibility is to look for the smallest pair of numbers (∆m, ∆n) satisfying
(4.6) using a simple computer program.

In conclusion, a phyllotactic pattern characterized by a pair of num-Pattern
construction bers (m,n) can be constructed as follows:

1. Find ∆m and ∆n from equation (4.6).

2. Find the range of admissible values of the angular displacements
δm and δn. The limits can be obtained from equations (4.12) and
(4.13) using the values of m and n for one limit, and the pair
(min{m,n}, |m − n|) for the other.

3. For a chosen pair of admissible displacement values δm and δn,
calculate the divergence angle α from equation (4.3) or (4.4) and
the vertical displacement h from equation (4.8).

4. Find the diameter d of the circles from equation (4.8).

The diameter d does not enter directly in any formula used for
image synthesis, but serves as an estimate of the size of surfaces to
be incorporated in the model. This algorithm was applied to produce
Table 4.1 showing parameter values for which three parastichies coexist.Triple-contact

patterns Given a pattern with two parastichies, this table provides the limits of
the divergence angle α. For example, a (5,8) pattern can be formed for
values of α ranging from 135.918365◦ to 138.139542◦, which correspond
to the patterns (3,5,8) and (5,8,13), respectively.

Further information relating the divergence angle α to the verti-
cal displacement h for various phyllotactic patterns is shown in Fig-
ure 4.14. The arcs represent parameters of patterns with two paras-
tichies (m,n). The branching points represent parameters of patterns
with three parastichies (m,n,m + n).
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m,n,m+n α (degrees) h d

(1, 1, 2) 180.000000 1.81380 -
(1, 2, 3) 128.571426 0.777343 2.374821
(1, 3, 4) 96.923073 0.418569 1.742642
(2, 3, 5) 142.105270 0.286389 1.441462
(1, 4, 5) 77.142860 0.259114 1.371104
(3, 4, 7) 102.162163 0.147065 1.032949
(3, 5, 8) 135.918365 0.111049 0.897598
(2, 5, 7) 152.307693 0.139523 1.006115
(1, 5, 6) 63.870968 0.175529 1.128493
(4, 5, 9) 79.672134 0.089203 0.804479
(4, 7, 11) 98.709671 0.058510 0.651536
(3, 7, 10) 107.088600 0.068878 0.706914
(3, 8, 11) 131.752579 0.056097 0.637961
(5, 8, 13) 138.139542 0.042181 0.553204
(5, 7, 12) 150.275223 0.049921 0.601820
(2, 7, 9) 158.507462 0.081215 0.767613

Table 4.1: Cylinder formula values for triple-contact patterns
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Figure 4.14: The vertical displacement h as a function of the divergence
angle α for various phyllotactic patterns
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Figure 4.15: Pineapples

Models of fruits synthesized using the cylindrical model are shown in
Figures 4.15 and 4.16. The pineapple (Figure 4.15) is an examplePineapple
of a pattern where a given scale has six neighbors, which belong to
5-, 8- and 13-parastichies. The corresponding divergence angle α is
equal to 138.139542◦. The spruce cones (Figure 4.16) were generatedSpruce cones
using the values m = 5, n = 8 and α = 137.5◦ (the divergence angle
α for a (5, 8)-parastichy pattern belongs to the interval 135.918365◦ to
138.139542◦). From these values, h and d were calculated as a function
of the radius of the cylinder. The effect of closing the bottom and
top of the pineapple and spruce cones was achieved by decreasing the
diameter of the cylinder and the size of the scales.

A variant of the model of phyllotaxis on a cylinder can be used to
model organs that are conical rather than cylindrical in shape. For
example, Figure 4.17 shows a model of the sedge Carex laevigata. L-Sedge
system 4.1 generates the male spike. Production p1 specifies the basic
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Figure 4.16: Spruce cones

Figure 4.17: Carex laevigata: the male spike, the entire shoot, the female
spike
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#define IRATE 1.025 /* internode growth rate */
#define SRATE 1.02 /* spikelet growth rate */
#include M /* spikelet shape specification */

ω : A
p1 : A : * → [&(5)f(1)∼M(1)]F(0.2)/(137.5)A
p2 : M(s) : s<3 → M(s*SRATE)
p3 : f(s) : s<3 → f(s*SRATE)
p4 : &(s) : s<15→ &(s*SRATE)
p5 : F(i) : i<1 → F(i*IRATE)

L-system 4.1: The male spike of Carex laevigata

layout of the spikelets, similar to that given by the L-system in Fig-
ure 4.11. The top portion of the spike has a conical shape due to the
growth of spikelets for some time after their creation by the apex. Ac-
cording to production p2, a spikelet grows by factor SRATE in each
derivation step, until it reaches the threshold size of 3. In an analogous
way, productions p3, p4 and p5 capture the distance increase between
spikelets and the spike axis, the increase of the branching angle, and
the elongation of internodes.

The models of phyllotaxis deal with the arrangement of organs in
space. For the purpose of mathematical analysis their shape is reduced
to a simple geometric figure, usually a circle. However, in realistic
images the exact shape of the organs must be captured as well. Several
techniques suitable for this purpose are outlined in the next chapter.



Chapter 5

Models of plant organs

Many concepts presented in the previous chapters were illustrated using
realistic images, but the modeling techniques for leaves and petals have
not been described yet. Three approaches are discussed below.

5.1 Predefined surfaces

The standard computer graphics method for defining arbitrary surfaces Bicubic patches
makes use of bicubic patches [9, 10, 40]. A patch is defined by three
polynomials of third degree with respect to parameters s and t. The
following equation defines the x coordinate of a point on the patch:

x(s, t) = a11s
3t3 + a12s

3t2 + a13s
3t + a14s

3

+ a21s
2t3 + a22s

2t2 + a23s
2t + a24s

2

+ a31st
3 + a32st

2 + a33st + a34s
+ a41t

3 + a42t
2 + a43t + a44

Analogous equations define y(s, t) and z(s, t). All coefficients are de-
termined by interactively designing the desired shape on the screen
of a graphics workstation. Complex surfaces are composed of several
patches.

The surfaces are incorporated into a plant model in a manner sim- Turtle
interpretationilar to subfigures (Section 1.4.2). The L-system alphabet is extended

to include symbols representing different surfaces. When the turtle
encounters such a symbol preceded by a tilde (∼), the corresponding
surface is drawn.

The exact position and orientation of surface S representing an ap-
pendage is determined using a contact point PS, the heading vector �HS

and the up vector �V S as a reference (Figure 5.1). The surface is trans-
lated in such a way that its contact point matches the current position
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Figure 5.1: Specification of an appendage

of the turtle, and is rotated to align its heading and up vectors with the
corresponding vectors of the turtle. If a surface represents an internal
part of the structure such as an internode, a distinction between the
entry and exit contact points is made.

The majority of organs presented in this book have been modeledExamples
this way. The petals of sunflowers, zinnias, water-lilies and roses shown
in Chapter 4 provide good examples. Figure 5.2 illustrates an additional
improvement in the appearance of organs, made possible by the appli-
cation of textures to the surfaces of leaves, flowers and vine branches.

5.2 Developmental surface models

Predefined surfaces do not “grow.” String symbols can be applied to
control such features as the overall color and size of a surface, but
the underlying shape remains the same. In order to simulate plant
development fully, it is necessary to provide a mechanism for changing
the shape as well as the size of surfaces in time. One approach is to
trace surface boundaries using the turtle and fill the resulting polygons.Contour

tracing A sample L-system is given below:

ω : L
p1 : L → {−FX + X − FX − | − FX + X + FX}
p2 : X → FX

Production p1 defines leaf L as a closed planar polygon. The braces
{ and } indicate that this polygon should be filled. Production p2

increases the lengths of its edges linearly. The model of a fern shownFern
in Figure 5.3 incorporates leaves generated using this method, with
the angle increment equal to 20◦. Note the phase effect due to the
“growth” of polygons in time. A similar approach was taken to generate
the leaves, flowers and fruits of Capsella bursa-pastoris (Figure 3.5 on
page 74).
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Figure 5.2: Maraldi figure by Greene [54]

Figure 5.3: The fern
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Figure 5.4: Surface specification using a tree structure as a framework

In practice, the tracing of polygon boundaries produces acceptable ef-Framework
approach fects only in the case of small, flat surfaces. In other cases it is more

convenient to use a tree structure as a framework. Polygon vertices are
specified by a sequence of turtle positions marked by the dot symbol
(.). An example is given in Figure 5.4a. The letter G has been used
instead of F to indicate that the segments enclosed between the braces
should not be interpreted as the edges of the constructed polygon. The
numbers correspond to the order of vertex specification by the turtle.

Figure 5.5 shows the development of a cordate leaf modeled usingCordate leaf
this approach. The axiom contains symbols A and B, which initiate the
left-hand and right-hand sides of the blade. Each of the productions p1

and p2 creates a sequence of axes starting at the leaf base and gradually
diverging from the midrib. Production p3 increases the lengths of the
axes. The axes close to the midrib are the longest since they were
created first. Thus, the shape of this leaf is yet another manifestation
of the phase effect. The leaf blade is defined as a union of triangles
rather than a single polygon. Such triangulation is advantageous if
the blade bends, for example due to tropism (Chapter 2). Figure 5.4b
provides an additional illustration of the model by magnifying the left
side of the leaf after four derivation steps.
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ω : [A][B]
p1 : A → [+A{.].C.}
p2 : B → [-B{.].C.}
p3 : C → GC

Figure 5.5: Developmental sequence of a cordate leaf generated using an
L-system

The described method makes it possible to define a variety of leaves. Simple leaves
Their shapes depend strongly on the growth rates of segments. For
example, a family of simple leaves and the corresponding parametric
L-system are shown in Figure 5.6.

According to production p1, in each derivation step apex A(t) ex-
tends the main leaf axis by segment G(LA,RA) and creates a pair of
lateral apices B(t). New lateral segments are added by production p2.
Parameter t, assigned to apices B by production p1, plays the role of
“growth potential” of the branches. It is decremented in each derivation
step by a constant PD, and stops production of new lateral segments
upon reaching 0. Segment elongation is captured by production p3.

For the purpose of analysis, it is convenient to divide a leaf blade
into two areas. In the basal area, the number of lateral segments is
determined by the initial value of growth potential t and constant PD.
Since the initial value of t assigned to apices B increases towards the
leaf apex, the consecutive branches contain more and more segments.
On the other hand, branches in the apical area exist for too short a
time to reach their limit length. Thus, while traversing the leaf from
the base towards the apex, the actual number of segments in a branch
first increases, then decreases. As a result of these opposite tendencies,
the leaf reaches its maximum width near the central part of the blade.
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n=20, δ=60◦

#define LA 5 /* initial length - main segment */
#define RA 1 /* growth rate - main segment */
#define LB 1 /* initial length - lateral segment */
#define RB 1 /* growth rate - lateral segment */
#define PD 1 /* growth potential decrement */

ω : {.A(0)}
p1 : A(t) : * → G(LA,RA)[-B(t).][A(t+1)][+B(t).]
p2 : B(t) : t>0 → G(LB,RB)B(t-PD)
p3 : G(s,r) : * → G(s*r,r)

Figure 5.6: A family of simple leaves generated using a parametric L-system

Figure LA RA LB RB PD

a 5 1.0 1.0 1.00 0.00
b 5 1.0 1.0 1.00 1.00
c 5 1.0 0.6 1.06 0.25
d 5 1.2 10.0 1.00 0.50
e 5 1.2 4.0 1.10 0.25
f 5 1.1 1.0 1.20 1.00

Table 5.1: Values of constants used to generate simple leaves
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Figure 5.7: A rose in a vase

Table 5.1 lists the values of constants corresponding to particular shapes. Shape control
For a given derivation length, the exact position of the branch with the
largest number of segments is determined by PD. If PD is equal to 0,
all lateral branches have an unlimited growth potential, and the basal
part of the leaf does not exist (Figure 5.6a). If PD equals 1, the basal
and apical parts contain equal numbers of lateral branches (Figures 5.6
b and f). Finer details of the leaf shape are determined by the growth
rates. If the main axis segments and the lateral segments have the same
growth rates (RA = RB), the edges of the apical part of the leaf are
straight (Figures 5.6 a and b). If RA is less than RB, the segments
along the main axis elongate at a slower rate than the lateral segments,
resulting in a concave shape of the apical part (Figures 5.6 c and f). In
the opposite case, with RA greater than RB, the apical part is convex
(Figures 5.6 d and e). The curvature of the basal edges can be analyzed
in a similar way.
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n=25, δ=60◦

#define LA 5 /* initial length - main segment */
#define RA 1.15 /* growth rate - main segment */
#define LB 1.3 /* initial length - lateral segment */
#define RB 1.25 /* growth rate - lateral segment */
#define LC 3 /* initial length - marginal notch */
#define RC 1.19 /* growth rate - marginal notch */

ω : [{A(0,0).}][{A(0,1).}]
p1 : A(t,d) : d=0 → .G(LA,RA).[+B(t)G(LC,RC,t).}]

[+B(t){.]A(t+1,d)
p2 : A(t,d) : d=1 → .G(LA,RA).[-B(t)G(LC,RC,t).}]

[-B(t){.]A(t+1,d)
p3 : B(t) : t>0 → G(LB,RB)B(t-1)
p4 : G(s,r) : * → G(s*r,r)
p5 : G(s,r,t) : t>1 → G(s*r,r,t-1)

Figure 5.8: A rose leaf

Figure 5.7 shows a long-stemmed rose with the leaves modeled accord-Rose leaf
ing to Figure 5.8. The L-system combines the concepts explored in
Figures 5.5 and 5.6. The axiom contains modules A(0, 0) and A(0, 1),
which initiate the left-hand and right-hand side of the leaf. The de-
velopment of the left side will be examined in detail. According to
production p1, in each derivation step apex A(t, 0) extends the midrib
by internodes G(LA,RA) and creates two colinear apices B(t) pointing
to the left. Further extension of the lateral axes is specified by produc-
tion p3. The leaf blade is constructed as a sequence of trapezoids, with
two vertices lying on the midrib and the other two vertices placed at
the endpoints of a pair of lateral axes formed in consecutive derivation
steps. The module G(LC,RC, t) introduces an offset responsible for
the formation of notches at the leaf margin. Production p4 describes
the elongation of internodes responsible for overall leaf shape, while
production p5 controls the size of the notches. The development of the
right side of the blade proceeds in a similar manner, with production p2
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Figure 5.9: Surface specification using stacked polygons

recreating the midrib and creating lateral apices pointing to the right.
The bending of the midrib to the right is a result of tropism.

In the examples discussed so far, the turtle specifies the vertices of Nested
polygonsone polygon, then moves on to the next. Further flexibility in surface

definition can be achieved by interleaving vertex specifications for dif-
ferent polygons. The turtle interpretation of the braces is redefined in
the following way. A string containing nested braces is evaluated us-
ing two data structures, an array of vertices representing the current
polygon and a polygon stack. At the beginning of string interpretation,
both structures are empty. The symbols {, } and . are then interpreted
as follows:

{ Start a new polygon by pushing the current polygon on
the polygon stack and creating an empty current polygon.

. Append the new vertex to the current polygon.

} Draw the current polygon using the specified vertices,
then pop a polygon from the stack and make it the current
polygon.

An example of string interpretation involving nested braces is given in
Figure 5.9.

The above technique was applied to construct the flowers of the Lily-of-the-
valleylily-of-the-valley shown in Figure 3.4 (page 72), and magnified in Fig-

ure 5.10. A flower is represented by a polygon mesh consisting of five
sequences of trapezoids spread between pairs of curved lines that em-
anate radially from the flower base. A single sequence is generated by
the following L-system:

ω : [X(36)A]/(72)[X(36)B]
p1 : A : ∗ → [&GA{.].
p2 : B : ∗ → B&.G.}
p3 : X(a) : ∗ → X(a + 4.5)
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Figure 5.10: Structure of a lily-of-the-valley flower

Productions p1 and p2 create two adjacent framework lines and mark
polygon vertices consistently with Figure 5.9. Production p3 controls
the angle at which the framework lines leave the stalk at the flower
base.

5.3 Models of compound leaves

So far, the discussion of organ models has focused on the definition
of surfaces. However, in the case of highly self-similar structures, the
individual surfaces become inconspicuous, and the expression of the
geometric relationships between younger and older parts of the struc-
ture becomes the key issue. For example, Figure 5.11 shows compoundSymmetric

branching leaves often found in the family Umbelliferae. According to produc-
tion p2, the apex A(0) creates two segments F (1) and a pair of lateral
apices A(D) in each derivation step. Production p1 delays the develop-
ment of the daughter branches by D steps with respect to the mother
branch. This pattern is repeated recursively in branches of higher or-
der. Production p3 gradually elongates the internodes, and in this way
establishes proportions between parts of a leaf. The values of the con-

Figure D R Derivation length

a 0 2.00 10
b 1 1.50 16
c 2 1.36 21
d 4 1.23 30
e 7 1.17 45

Table 5.2: Values of constants used to generate compound leaves
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#define D 1 /* apical delay */
#define R 1.5 /* internode elongation rate */

ω : A(0)
p1 : A(d) : d > 0 → A(d-1)
p2 : A(d) : d = 0 → F(1)[+A(D)][-A(D)]F(1)A(0)
p3 : F(a) : * → F(a*R)

Figure 5.11: Compound leaves
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#define D 1 /* apical delay */
#define R 1.36 /* internode elongation rate */

ω : A(0)
p1 : A(d) : d>0 → A(d-1)
p2 : A(d) : d=0 → F(1)[+A(D)]F(1)B(0)
p3 : B(d) : d>0 → B(d-1)
p4 : B(d) : d=0 → F(1)[-B(D)]F(1)A(0)
p5 : F(a) : * → F(a*R)

Figure 5.12: Compound leaves with alternating branching patterns

Figure D R Derivation length

a 1 1.36 20
b 4 1.18 34
c 7 1.13 46

Table 5.3: Values of the constants used to generate compound leaves with
alternating branches
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stants used to generate the structures shown in Figure 5.11 are listed
in Table 5.2. The model is sensitive to growth rate values — a change
of 0.01 visibly alters proportions. Leaves of the wild carrot, shown in
Figure 3.23 (page 96), correspond closely to case Figure 5.11b.

Another type of compound leaf, with alternating branches, is ex- Alternating
branchingamined in Figure 5.12. The values of the constants used in the L-

system are specified in Table 5.3. Further examples can be found in
the next chapter, devoted to the animation of developmental processes,
and Chapter 8, which ties developmental models with fractals.





Chapter 6

Animation of plant
development

The sequences of images used in Chapters 3 and 5 to illustrate the de- Motivation
velopment of inflorescences and compound leaves suggest the possibil-
ity of using computer animation to visualize plant development. From
a practical perspective, computer animation offers several advantages
over traditional time-lapse photography.

• Photography is sensitive to imperfections in the underlying ex-
periment. A disease or even a temporary wilting of a plant may
spoil months of filming.

• In nature, developmental processes are often masked by other
phenomena. For example, the growth of leaves can be difficult
to capture because of large changes in leaf positions during the
day. Similarly, positions of tree branches may be affected by
wind. Computer animation makes it possible to abstract from
these distracting effects.

• Animation can be used when time-lapse photography is imprac-
tical because of the long development time of plants (e.g. years
in the case of trees).

• In time-lapse photography, the initial position of the camera and
the light conditions must be established a priori, without know-
ing the final shape of the plant. In computer animation all de-
velopmental stages of the modeled plant are known in advance,
allowing for optimal selection of the model view.

• Animation can be applied to visualize developmental mechanisms
that cannot be observed directly in real plants, such as the prop-
agation of hormones and nutrients.



134 Chapter 6. Animation of plant development

• Animation offers an unprecedented means for visualizing the de-
velopment of extinct plants on the basis of paleobotanical data.

The original formalism of L-systems provides a model of develop-Discrete
character of
L-systems

ment that is discrete both in time and space. Discretization in time
implies that the model states are known only at specific time inter-
vals. Discretization in space means that the range of model states is
limited to a finite number. Parametric L-systems remove the latter ef-
fect by assigning continuous attributes to model components. However,
the model states are still known only in discrete time intervals. This
presents a problem in animation, where a smooth progression of the
developing forms is desirable.

This last statement requires further clarification. The very nature
of animation is to produce the impression of continuous motion by dis-
playing a sequence of still frames, captured at fixed time intervals. Why
is a continuous model of plant development needed if it will be used to
generate a fixed sequence of images in the final account? Wouldn’t it
be enough to retain the standard definition of L-systems and assume
time slices fine enough to produce the desired progression of forms?
This approach, while feasible and useful, has three major drawbacks.

• A model can be constructed assuming longer or shorter time in-
tervals, but once the choice has been made, the time step is a part
of the model and cannot be changed easily. From the viewpoint
of computer animation it is preferable to control the time step by
a single parameter, decoupled from the underlying L-system.

• The continuity criteria responsible for the smooth progression of
shapes during animation can be specified more easily in the con-
tinuous time domain.

• It would be conceptually elegant to separate model development,
defined in continuous time, from model observation, taking place
in discrete intervals.

A developmental process is viewed as consisting of periods of contin-
uous module expansion delimited by instantaneous module divisions.
Special conditions are imposed to preserve the shape and growth rates
of the organism during these qualitative changes. An analogy can be
drawn to the theory of morphogenesis advanced by Thom [142], who
viewed shape formation as a piecewise continuous process with singu-
larities called catastrophes.

Formally, development taking place in continuous time is captured
using the formalism of timed DOL-systems. The key difference between
these L-systems and the types of L-systems considered so far lies in
the definition of the derivation function. In “ordinary” L-systems, the
derivation length is expressed as the number of derivation steps. In
timed DOL-systems, the derivation length is associated with the total
elapsed time since the beginning of the observation.
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6.1 Timed DOL-systems

Let V be an alphabet and R the set of positive real numbers (including
0). The pair (a, τ) ∈ V × R is referred to as the timed letter a, and
the number τ is called the age of a. A sequence of timed letters, x =
(a1, τ1) . . . (an, τn) ∈ (V × R)∗, is called a timed word over alphabet V .

A timed DOL-system (tDOL-system) is a triplet G = 〈V, ω, P 〉, Definition
where

• V is the alphabet of the L-system,

• ω ∈ (V ×R)+ is a nonempty timed word over V , called the initial
word, and

• P ⊂ (V × R) × (V × R)∗ is a finite set of productions.

Instead of writing ((a, β), (b1, α1) . . . (bn, αn)) ∈ P , the notation
(a, β) → (b1, α1) . . . (bn, αn) is used. The parameter β is referred to
as the terminal age of the letter a, and each parameter αi is the initial
age assigned to the letter bi by production P . The following assump-
tions are made:

C1. For each letter a ∈ V there exists exactly one value β ∈ R such
that (a, β) is the predecessor of a production in P .

C2. If (a, β) is a production predecessor and (a, α) is a timed let-
ter that occurs in the successor of some production in P , then
β > α.

According to these conditions, each letter has a uniquely defined
terminal age. Furthermore, an initial age assigned to a letter by a
production must be smaller than its terminal age, i.e., its lifetime (β −
α) must be positive.

Let (a, β) → (b1, α1) . . . (bn, αn) be a production in P . A function Derivation
D : ((V ×R)+ ×R) → (V ×R)∗ is called a derivation function if it has
the following properties:

A1. D(((a1, τ1) . . . (an, τn)), t) = D((a1, τ1), t) . . .D((an, τn), t)

A2. D((a, τ), t) = (a, τ + t), if τ + t ≤ β

A3. D((a, τ), t) = D((b1, α1) . . . (bn, αn), t − (β − τ)), if τ + t > β

A derivation in a timed DOL-system is defined in terms of two types
of time variables. Global time t is common to the entire word under
consideration, while local age values τi are specific to each letter ai.
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Axiom A1 identifies t as the variable that synchronizes the entire de-
velopment, and specifies that the lineages of all letters can be considered
independently from each other (thus, no interaction between letters is
assumed). With the progress of time t, each letter “grows older” until
its terminal age is reached (axiom A2). At this moment subdivision
occurs and new letters are produced with initial age values specified by
the corresponding production (axiom A3). Condition C1 guarantees
that the subdivision time is defined unambiguously, hence the devel-
opment proceeds in a deterministic fashion. Condition C2 guarantees
that, for any value of time t, the recursive references specified by axiom
A3 will eventually end.

The above concepts are examined by formulating a timed DOL-Anabaena
system that simulates the development of a vegetative part of the An-
abaena catenula filament. Given the discrete model expressed by equa-
tion (1.1) on page 5, the corresponding tDOL-system is as follows:

ω : (ar, 0)
p1 : (ar, 1) → (al, 0)(br, 0)
p2 : (al, 1) → (bl, 0)(ar, 0)
p3 : (br, 1) → (ar, 0)
p4 : (bl, 1) → (al, 0)

(6.1)

In accordance with the discrete model, it is assumed that all cells have
the same lifetime, equal to one time unit. The derivation tree is shown
in Figure 6.1. The nodes of the tree indicate production applications
specified by axiom A3, and the triangular “arcs” represent the continu-
ous aging processes described by axiom A2. The vertical scale indicates
global time. For example, at time t = 2.75 the filament consists of three
cells, bl, ar and ar, whose current age is equal to 0.75.

According to the definition of time intervals corresponding to axioms
A2 and A3, a production is applied after the age τ + t exceeds the
terminal age. Consequently, at division time the “old” cells still exist.
For example, at time t = 2.0 the filament consists of two cells, al and
br, both of age τ = 1.

The above L-system can be simplified by considering cells of type b
as young forms of the cells of type a. This is suggested by Figure 6.1
where cells b simply precede cells a in time. The simplified L-system
has two productions:

p1 : (ar, 2) → (al, 1)(ar, 0)
p2 : (al, 2) → (al, 0)(ar, 1)

(6.2)

The corresponding derivation tree starting from cell (ar, 1) is shown in
Figure 6.2. Note the similarity to the tree from the previous example.

Whether a natural developmental process or its mathematical modelModel
observation is considered, the choice of observation times and the act of observation

should not affect the process itself. In other terms, each derived word
should depend only on the total elapsed time t, and not on the partition
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Figure 6.1: Derivation tree representing the continuous development of An-
abaena catenula described by the L-system is equation (6.1). Sections of the
triangles represent cell ages.

Figure 6.2: Derivation tree representing the continuous development of An-
abaena catenula corresponding to the rules specified in equation (6.2)
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of t into intervals. The following theorem shows that timed DOL-
systems satisfy this postulate.
Theorem. Let G = 〈V, ω, P 〉 be a tDOL-system, and x ∈ (V ×R)+ be
a timed word over V . For any values of ta, tb ≥ 0, the following holds:

D(D(x, ta), tb) = D(x, ta + tb)

Proof. Let us first consider the special case where the word x consists
of a single timed letter, (a0, τ0), and all productions in the set P take
single letters into single letters. According to condition C1, there exists
a unique sequence of productions from P such that:

(ai, βi) → (ai+1, αi+1), i = 0, 1, 2, . . .

Let (ak, τk) be the result of the derivation of duration ta that starts
from (a0, τ0). According to axioms A2 and A3, and assuming that
ta > β0 − τ0, this derivation can be represented in the form

D ((a0, τ0), ta)

= D((a1, α1), ta − (β0 − τ0))

= D((a2, α2), ta − (β0 − τ0) − (β1 − α1))

= · · ·
= D((ak, αk), ta − (β0 − τ0) − (β1 − α1) − . . . − (βk−1 − αk−1))

= (ak, τk),

where

τk = αk + [ta − (β0 − τ0) −
k−1∑
i=1

(βi − αi)].

Since the sequence of recursive calls can be terminated only by an ap-
plication of axiom A2, the index k and the age τk satisfy the inequality

αk < τk ≤ βk.

Due to condition C2, such an index k always exists and is unique.
Let us now consider a derivation of duration tb > βk − τk that

starts from (ak, τk). Following the same reasoning, the result can be
represented as (am, τm), where

τm = αm + [tb − (βk − τk) −
m−1∑

i=k+1

(βi − αi)]

and
αm < τm ≤ βm.

By substituting the value of τk into the formula for τm, we obtain after
simple transformations

τm = αm + [(ta + tb) − (β0 − τ0) −
m−1∑
i=1

(βi − αi)].
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Thus, the timed letter (am, τm) also results from the derivation of du-
ration ta + tb starting with (a0, τ0):

(am, τm) = D(D((a0, τ0), ta), tb) = D((a0, τ0)x, ta + tb).

So far, we have considered only the case

ta > β0 − τ0, tb > βk − τk.

Two other cases, namely,

0 ≤ ta ≤ β0 − τ0, tb > βk − τk

and
ta > β0 − τ0, 0 ≤ tb ≤ βk − τk

can be considered in a similar way. The remaining case,

0 ≤ ta ≤ β0 − τ0, 0 ≤ tb ≤ βk − τk,

is a straightforward consequence of condition C2. This completes the
proof of the special case. In general, a derivation that starts from a
word (a1, τ1) . . . (an, τn) can be considered as n separate derivations,
each starting from a single letter. This observation applies not only to
the initial word specified at time t = 0, but also to any intermediate
word generated during the derivation. Consequently, any path in the
derivation tree can be considered as a sequence of mappings that takes
single letters into single letters. Application of the previous reasoning
separately to every path concludes the proof. �

6.2 Selection of growth functions

Timed L-systems capture qualitative changes in model topology corre-
sponding to cell (or, in general, module) divisions, and return the age
of each module as a function of the global time t. In order to complete
model definition, it is also necessary to specify the shape of each module
as a function of its age. Potentially, such growth functions can be es-
timated experimentally by observing real organisms [72, 73]. However,
if detailed data is not available, growth functions can be selected from
an appropriate class by choosing parameters so that the animation is
smooth. This approach can be viewed as more than an ad hoc tech-
nique for constructing acceptable animated sequences. In fact, Thom
presents it as a general methodology for studying morphogenesis [142,
page 4]:

The essence of the method to be described here consists
in supposing a priori the existence of a differential model
underlying the process to be studied and, without knowing
explicitly what the model is, deducing from the single as-
sumption of its existence conclusions relating to the nature
of the singularities of the process.
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A technique for computing parameters of growth functions in the
case of nonbranching filaments and simple branching structures is given
below.

6.2.1 Development of nonbranching filaments

In a simple case of geometric interpretation of timed L-systems, symbols
represent cells that elongate during their lifetime and divide upon reach-
ing terminal age. Model geometry does not change suddenly, which
means that

• the length of each cell is a continuous function of time, and

• the length of a cell before subdivision is equal to the sum of the
lengths of the daughter cells.

The above continuity requirements are formalized in the context of aContinuity
requirements tDOL-system G = 〈V, ω, P 〉 as follows:

R1. Let [αmin, β] describe the life span of a timed letter a ∈ V . The
age αmin is the minimum of the initial age values assigned to a
by the axiom ω or by some production in P . The terminal age
β is determined by the predecessor of the production acting on
symbol a. The growth function g(a, τ), which specifies the length
of cell a as a function of age τ , must be a continuous function of
parameter τ in the domain [αmin, β].

R2. For each production (a, β) → (b1, α1) . . . (bn, αn) in P the follow-
ing equality holds:

g(a, β) =
n∑

i=1

g(bi, αi) (6.3)

In practice, requirement R1 is used to select the class of growth func-
tions under consideration, and the equations resulting from requirement
R2 are used to determine the parameters in function definitions.

For example, in the case of the timed L-system specified in equa-Linear growth
tion (6.2), requirement R2 takes the form

g(ar, 2) = g(al, 1) + g(ar, 0)
g(al, 2) = g(al, 0) + g(ar, 1). (6.4)

Let us assume that the growth functions are linear functions of time:

g(al, τ) = Alτ + Bl

g(ar, τ) = Arτ + Br
(6.5)
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Figure 6.3: Diagrammatic representation of the development of Anabaena
catenula, with (a) linear and (b) exponential growth of cells

By substituting equations (6.5) into (6.4), we obtain

2Ar + Br = (1Al + Bl) + (0Ar + Br) or 2Ar = Al + Bl

2Al + Bl = (0Al + Bl) + (1Ar + Br) or 2Al = Ar + Br.

The desired continuity of development is provided by all solutions of
this system. They can be expressed in terms of coefficient c, which
relates the growth rate of cells al to that of cells ar:

Al = cAr

Bl = Ar(2 − c)
Br = Ar(2c − 1)

Figure 6.3a illustrates the developmental process considered for c =
1. The diagram is obtained by plotting the cells in the filament as
horizontal line segments on the screen. Colors indicate cell type and
age. The observation time t ranges from 1 (at the top) to 7 (at the
bottom), with increment ∆t = 0.009.

The slopes of the side edges of the diagram represent growth rates
of the entire structure. Notice that they remain constant in the peri-
ods between cell divisions, then change. This effect is disconcerting in
animation, since the rate of organism growth suddenly increases with
each cell division. In order to prevent this, it is necessary to extend re-
quirements R1 and R2 to a higher order of continuity N . Specifically,
equation (6.3) takes the form

g(k)(a, β) =
n∑

i=1

g(k)(bi, αi) for k = 0, 1, . . . , N, (6.6)
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where g(k)(a, τ) is the kth derivative of the growth function g(a, τ) with
respect to age τ .

In the case of Anabaena, an attempt to achieve first-order continu-
ity assuming linear growth functions yields an uninteresting solution,
g(al, τ) = g(ar, τ) ≡ 0. Thus, more complex growth functions must beExponential

growth considered, such as an exponential function that can be used to approx-
imate the initial phase of sigmoidal growth. Assume that the growth
function has the form

g(al, τ) = g(ar, τ) = AeBτ . (6.7)

The objective is to find values of parameters A and B that satisfy
equation (6.6) for k = 0, 1. By substituting equation (6.7) into (6.6),
we obtain

ABke2B = ABkeB + ABk, (6.8)

which implies that zero-order continuity yields continuity of infinite
order in this case. Solution of equation (6.8) for any value of k yields

B = ln
1 +

√
5

2
≈ 0.4812. (6.9)

Parameter A is a scaling factor and can be chosen arbitrarily. The
corresponding diagrammatic representation of development is shown in
Figure 6.3b. The side edges of the diagram, representing the growth
rates of the whole structure, are smooth exponential curves.

6.2.2 Development of branching structures

The notions of tDOL-system and growth function extend in a straight-
forward way to L-systems with brackets. For example, the following
tDOL-system describes the recursive structure of the compound leaves
analyzed in Section 5.3.

ω : (a, 0)
p1 : (a, 1) → (s, 0)[(b, 0)][(b, 0)](a, 0)
p2 : (b, β) → (a, 0)

According to production p1, apex a produces an internode s, two lateral
apices b and a younger apex a. Production p2 transforms the lateral
apices b into a after a delay β. The daughter branches recursively repeat
the development of the mother branch.

Let us assume that the leaf development is first-order continuous,
yielding the following equations for k = 0, 1:

g(k)(a, 1) = g(k)(s, 0) + g(k)(a, 0) (6.10)

g(k)(b, 0) = 0 (6.11)

g(k)(b, β) = g(k)(a, 0) (6.12)
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Equation (6.10) provides continuity along an existing axis upon the
formation of a new internode s. Equation (6.11) specifies that a newly
formed lateral apex b has zero length and zero growth rate. Equa-
tion (6.12) guarantees smooth transformation of apices b into apices a.

Let us further assume that apices a and internodes s expand expo-
nentially,

g(a, τ) = Aae
Baτ (6.13)

g(s, τ) = Ase
Bsτ , (6.14)

for τ ∈ [0, 1]. The expansion of the lateral apices cannot be described
by an exponential function, since it would not satisfy equations (6.11).
Consequently, a polynomial growth function g(b, τ) is chosen. Equa-
tions (6.11) and (6.12) fix the function’s endpoints and the tangents at
the endpoints. Thus, in general, g(b, τ) must be a polynomial of degree
three or more, such as

g(b, τ) = Abτ
3 + Bbτ

2 + Cbτ + Db. (6.15)

The system of equations (6.10) through (6.12) is solved using the initial
size Aa and the growth rate coefficient Ba as independent variables.
By substituting (6.13) and (6.14) into equations (6.10) for k = 0, 1, we
obtain

As = Aa(eBa − 1)

Bs = Ba.

Equations (6.11) and (6.15) yield

Cb = Db = 0.

Finally, substitution of (6.13) and (6.15) into (6.12) results in

Ab =
Aa

β3
(βBa − 2)

Bb =
Aa

β2
(3 − βBa).

Figure 6.4 shows a sequence of images produced by this model using
values β = Aa = 1 and Ba = 0.48. The branching angles are equal to
45◦. The observation time t ranges from 6.9 to 7.7, with an increment
of 0.2. Note the gradual formation of lateral segments.

In the examples considered above, modules are represented as
straight lines, with growth functions controlling line lengths. Other
parameters, such as the branching angle, the diameter of segments and
the size of predefined surfaces, can be controlled in an analogous way.
Generally, any developmental model captured by an OL-system with
turtle interpretation can be converted into a tDOL-system and ani-
mated.
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Figure 6.4: Developmental sequence of a branching structure modeled using
a tDOL-system



Chapter 7

Modeling of cellular layers

String L-systems, the first formalism considered in this book, are suit-
able for the modeling of nonbranching filaments such as Anabaena
catenula. The introduction of brackets extends the class of modeled
structures to axial trees. However, many structures found in botany
have a more complex topology, which can only be described by graphs
with cycles. The developmental surface models presented in Section 5.2
make it possible to specify a limited class of these graphs. This chapter
describes a more general approach and applies it to simulate the devel-
opment of single-layered cellular structures such as those found in fern
gametophytes, animal embryos and plant epidermis. All structures con-
sidered are of microscopic dimensions and relatively undifferentiated,
yet the presented methods may bring us closer to the modeling of more
complex patterns, such as the venation of leaves.

The modeling method consists of two stages. First, the topology
of the cell division patterns are expressed using the formalism of map
L-systems, which allows for the formation of cycles in a structure. At
this stage the neighborhood relations between cells are established, but
the cell shapes remain unspecified. Next, cell geometry is modeled
using a dynamic method that takes into account the osmotic pressure
inside the cells and the tension of cell walls. The development can be
animated by considering periods of continuous cell expansion, delimited
by instantaneous cell divisions.

7.1 Map L-systems

From a mathematical perspective, cellular layers can be represented Maps as
models of cell
layers

using a class of planar graphs with cycles, called maps [148]. Nakamura
et al. [102] characterize them as follows:

• A map is a finite set of regions. Each region is surrounded by
a boundary consisting of a finite, circular sequence of edges that
meet at vertices.



146 Chapter 7. Modeling of cellular layers

• Each edge has one or two vertices associated with it. The one-
vertex case occurs when an edge forms a loop. The edges cannot
cross without forming a vertex and there are no vertices without
an associated edge.

• Every edge is a part of the boundary of a region.

• The set of edges is connected. Specifically, there are no islands
within regions.

A map corresponds to a microscopic view of a cellular layer. Regions
represent cells, and edges represent cell walls perpendicular to the plane
of view. The internal components of a cell are not considered.

The process of cell division can be described by map rewriting. ThisMap rewriting
notion is an extension of string rewriting as discussed in Section 1.2.
In general, map-rewriting systems are categorized as sequential or par-
allel, and can be region-controlled or edge-controlled [87]. Since several
cells may divide concurrently, a parallel rewriting system is needed.
The second categorization has to do with the form of rewriting rules,
which may express cell subdivisions in terms of region labels or edge
labels. Both approaches are suitable for biological modeling purposes
[22]. This chapter focuses on the edge-controlled formalism of Binary
Propagating Map OL-system with markers, or mBPMOL-systems. ItmBPMOL-

systems was proposed by Nakamura, Lindenmayer and Aizawa [102] as a refine-
ment of the basic concept of map L-systems introduced by Lindenmayer
and Rozenberg [91]. The name is derived as follows. A map OL-system
is a parallel rewriting system that operates on maps and does not al-
low for interaction between regions. In other words, regions are modi-
fied irrespective of what happens to neighboring regions (a context-free
mechanism). The system is binary because a region can split into at
most two daughter regions. It is propagating in the sense that the edges
cannot be erased, thus regions (cells) cannot fuse or die. The markers
specify the positions of inserted edges that split the regions.

The choice of mBPMOL-systems as a modeling tool has two jus-
tifications. First, they are more powerful than other interactionless
map-rewriting systems described in the literature [19, 22, 23]. In addi-
tion, markers have a biological counterpart in preprophase bands of mi-
crotubules, which coincide with the attachment sites for division walls
formed during mitosis [55]. It should be noted, however, that double
wall systems, introduced by J. and H. B. Lück [93], may be relatively
easier to specify [23].

An mBPMOL-system G consists of a finite alphabet of edge labelsDefinition
Σ, a starting map ω with labels from Σ, and a finite set of edge pro-
ductions P . In general, the edges are directed, which is indicated by a
left or right arrow placed above the edge symbol. In some cases, the
edge direction has no effect on the system operation. Such an edge
is called neutral and no arrow is placed above the symbol denoting it.
Each production is of the form A → α, where the directed or neutral
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Figure 7.1: Examples of edge productions

edge A ∈ Σ is called the predecessor, and the string α, composed of
symbols from Σ and special symbols [, ], +, and −, is called the succes-
sor. The symbols outside square brackets specify the edge subdivision
pattern. Arrows can be placed above edge symbols to indicate whether
the successor edges have directions consistent with, or opposite to, the
predecessor edge. Pairs of matching brackets [ and ] delimit markers,
which specify possible attachment sites for region-dividing walls. The
markers are viewed as short branches that can be connected to form a
complete wall. The strings inside brackets consist of two symbols. The
first symbol is either + or −, indicating whether the marker is placed
to the left or to the right of the predecessor edge. The second symbol
is the marker label, with or without an arrow. The left arrow indicates
that the marker is directed towards the predecessor edge, and the right
arrow indicates that the marker is directed away from that edge. If no
arrow is present, the marker is neutral.

For example, in the production
→
A → →

D
←
C [−←E ]

→
BF , the directed prede- Production

syntaxcessor A splits into four edges D, C, B and F , and produces a marker E
(Figure 7.1a). Successor edges D and B have the same direction as A,
edge C has the opposite direction, and F is neutral. Marker E is placed
to the right of A and is directed towards A. Note that this same pro-
duction could be written as

←
A → F

←
B[+

←
E ]
→
C
←
D (Figure 7.1b). As an example

of a production with a neutral predecessor, consider A→→B[−←B]x[+
←
B]
←
B. In

this case the result of production application does not depend on the
assumed direction of the predecessor edge (Figure 7.1c).

A derivation step in an mBPMOL-system consists of two phases. Derivation

• Each edge in the map is replaced by successor edges and markers
using the corresponding edge production in P .

• Each region is scanned for matching markers.
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ω : ABAB
p1 : A → B[-A][+A]B
p2 : B → A

Figure 7.2: Example of a map L-system. In the first step, a distinction
is made between the edge-rewriting phase and the connection of matching
markers.

Two markers are considered matching if:

• they appear in the same region,

• they have the same label, and

• one marker is directed away from its incident edge while the other
is directed towards the edge, or both markers are neutral.

If a match is found, the markers are joined to create a new edge that
will split the region. The search for matching markers ends with the
first match found, even though other markers entering the same region
may also form a match. From the user’s perspective, the system be-
haves nondeterministically since it chooses the pair of markers to be
connected. The unused markers are discarded.

The operation of mBPMOL-systems is illustrated in the followingExamples
examples. The L-system shown in Figure 7.2 has two productions.
Production p1 creates markers responsible for region division, while
production p2 introduces a delay needed to subdivide the regions alter-
nately by horizontal and vertical edges.

The L-system shown in Figure 7.3 is a modified version of the pre-
vious one. The only difference is the addition of an edge x, which
separates the markers in the successor of production p1. This edge
creates a Z-shaped offset between the inserted edges A. Z-offsets and
symmetric S-offsets (Figure 7.4) can be observed in many biological
structures [22, 92].

Figure 7.5 illustrates the operation of an mBPMOL-system with
directed edges. Productions p1 and p3 create markers. Production p4
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ω : ABAB
p1 : A → B[-A]x[+A]B
p2 : B → A

Figure 7.3: Example of a map L-system

Figure 7.4: Offsets between four regions that result from the division of two
regions sharing a common edge: (a) Z-offset, (b) S-offset

ω :
→
A
→
B
→
C
→
D

p1 :
→
A → →

D[-
→
A]
→
B

p2 :
→
B → →

B

p3 :
→
C → →

B[-
←
A]
→
B

p4 :
→
D → →

C

Figure 7.5: Example of a map L-system with directed edges
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transforms edge D into C, so that in each derivation step there is a pair
of edges A and C to which productions p1 and p3 apply. Production p2

indicates that edges B do not undergo further changes.1 The resulting
structure is that of a clockwise spiral.

7.2 Graphical interpretation of maps

Maps are topological objects without inherent geometric properties. In
order to visualize them, some method for assigning geometric interpre-
tation must be applied. In its description, the biologically-motivated
terms cell and wall will be used instead of their mathematical counter-
parts, region and edge.

Siero, Rozenberg and Lindenmayer [131] proposed a method that,Wall
subdivision in the simplest case, is expressed by the following rules:

• walls are represented by straight lines,

• the starting map is represented by a regular polygon, bounded by
the walls specified in the axiom,

• when a production subdivides a wall, all successor walls are of
equal length, and

• the position of a wall resulting from the union of two matching
markers is based on the position of these markers.

This wall subdivision method was used to draw Figures 7.2, 7.3 and
7.5. However, in a biological context it creates cells with shapes that
are seldom observed in nature.

De Does and Lindenmayer [24] proposed a center of gravity methodCenter of
gravity method that produces more realistic shapes. According to this method each

interior vertex of the map is placed at the center of gravity of its neigh-
bors. Such positioning of vertices has a sound biological justification;
it minimizes hypothetical forces acting along cell walls, thus bringing
the entire structure to a state of minimum energy. However, if all ver-
tices were positioned this way, the entire structure would collapse. To
counteract this effect, the vertices on the map perimeter are displaced
outward a fixed distance. Unfortunately, this lacks biological justifi-
cation and introduces sudden shape changes after cell divisions have
occurred, making it unsuitable for animation purposes.

Assuming a dynamic point of view, the shape of cells and thus theDynamic
method shape of the entire organism results from the action of forces. The

unbalanced forces due to cell divisions cause the gradual modification
of cell shapes until an equilibrium is reached. At this point, new cell
divisions occur, and the search for an equilibrium resumes.

1In further L-systems such identity productions are omitted.
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The dynamic method is based on the following assumptions:

• the modeled organism forms a single cell layer,

• the layer is represented as a two-dimensional network of masses
corresponding to cell vertices, connected by springs that corre-
spond to cell walls,

• the springs are always straight and obey Hooke’s law,

• each cell exerts pressure on its bounding walls directly propor-
tional to the wall length and inversely proportional to the cell
area,

• the pressure on a wall is divided evenly between the wall vertices,

• the motion of masses is damped, and

• no other forces (for example, due to friction or gravity) are con-
sidered.

The position of each vertex, and thus the shape of the layer, is com-
puted as follows. As long as an equilibrium is not reached, unbalanced
forces put masses in motion. The total force �F T acting on a vertex X
is given by the formula

�FT =
∑

w∈W

�Fw + �Fd,

where �Fw are forces contributed by the set W of walls w incident to
X, and �Fd = −b�v is a damping force, expressed as the product of a
damping factor b and vertex velocity �v.

A wall w ∈ W contributes three forces acting on X (Figure 7.6).
The tension �Fs acts along the wall, and its magnitude is determined by
Hooke’s law,

�Fs = −k(l − l0),

where k is the spring constant, l is the current spring length, and l0 is
its rest length. The remaining forces, �P L and �P R, are due to the pressure
exerted by the cells on the left and right sides of the wall. Each force
acts in a direction perpendicular to the wall and is distributed equally
between the incident vertices. The magnitude of these forces equals
p · l, where p is the internal cell pressure and l is the wall length.
The pressure is assumed to be inversely proportional to the cell area:
p ∼ A−1. This assumption is derived from the equation describing
osmotic pressure, p = SRT , as a function of the concentration of the
solute S (n moles per volume V ), the ideal gas constant R, and the
absolute temperature T [129]. Assuming that the cell volume V is
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Figure 7.6: Forces acting on a cell vertex X

proportional to the area A captured by the two-dimensional model
under consideration (V = Ah), pressure can be expressed as

p =
nRT

Ah
.

Thus p ∼ A−1, provided that the term nRT/h is constant. A convenient
formula for calculating the area A is

A = |
M∑
i=1

(xi − xi+1)(yi + yi+1)/2|,

where (xi, yi) are coordinates of the M vertices of the cell, xM+1 = x1,
and yM+1 = y1.

The force �F T acts on a mass placed at a map vertex. Newton’s
second law of motion applies,

m
d2�x

dt2
= �FT ,

where �x is the vertex position. If the entire structure has N vertices, a
system of 2N differential equations is obtained,

mi
d�vi

dt
= �FTi

(�x1, · · · , �xN , �vi)

d�xi

dt
= �vi,

where i = 1, 2, . . . , N . The task is to find the sequence of positions
�x1, . . . , �xN at given time intervals, assuming that the functions �F Ti

and
the initial values of all variables �x 0

1 , . . . , �x 0
N and �v 0

1 , . . . , �v 0
N are known.

These initial values are determined as follows.
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• Coordinates of the vertices of the starting map are included in
the input data for the simulation.

• Positions of existing vertices are preserved through a derivation
step. New vertices partition the divided walls into segments of
equal length. The initial velocities of all vertices are set to zero.

The system of differential equations with the initial values given
above represents an initial value problem. It can be solved numerically
using the forward (explicit) Euler method [41]. To this end, the dif-
ferential equations are rewritten using finite increments ∆�vi, ∆�xi and
∆t,

∆�v k
i =

1

mi

�FTi

(
�x k

1 , · · · , �x k
N , �v k

i

)
∆t

∆�x k
i = �v k

i ∆t,

where the superscripts k = 0, 1, 2, . . . indicate the progress of time,
t = k∆t. The position and velocity of a point i after time increment
∆t are expressed as follows:

�v k+1
i = �v k

i + ∆�v k
i

�x k+1
i = �x k

i + ∆�v k
x

The iterative computation of the velocities �v k
i and positions �x k

i is car-
ried out for consecutive values of index k until all increments ∆�vi and
∆�xi fall below a threshold value. This indicates that the equilibrium
state has been approximated to the desired accuracy. The next deriva-
tion step is then performed. A system of equations corresponding to
the resulting map is created, and the search for an equilibrium state
resumes. In this way, the developmental process is simulated as periods
of continuous cell expansion, delimited by instantaneous cell divisions.
Continuity of cell shapes during divisions is preserved by the rule that
sets the initial positions of vertices.

For example, Figure 7.7 illustrates the expansion of a structure gen-
erated by the L-system specified in Figure 7.3 in a derivation of length
4. Figure 7.7a shows the structure immediately after the insertion of
division walls, Figures 7.7b and c present intermediate wall positions,
and Figure 7.7d describes the final structure at equilibrium.

7.3 Microsorium linguaeforme

In this section, the described simulation method is applied to visualize
the development of the fern gametophyte Microsorium linguaeforme.
The biological data is based on observations conducted by de Boer [22].
Fern gametophytes represent the sexually reproducing life stage of fern
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a b

c d

Figure 7.7: Expansion of a cellular structure: (a) after division, (b) and (c)
intermediate positions, (d) equilibrium

plants. They show no differentiation into stem, leaf and root, forming
a plant body called a thallus. The development of a thallus can be
described conveniently in terms of the activity of the apical cell giving
rise to segments, and the development of these segments. The modeling
process captures repetitive patterns of cell divisions, so that large cel-
lular structures can be described using a small number of productions.

The apical cell is the originator of the gametophyte structure. ItApical activity
divides repetitively, giving rise each time to a new apical cell and a
primary (initial) segment cell. The segment cells subsequently develop
into multicellular segments. The division wall of an apical cell is at-
tached to the thallus border on one side and to a previously created
division wall on the other side. Thus, the division walls are oriented al-
ternately to the left and to the right, yielding two columns of segments
separated by a zig-zag dividing line (Figure 7.8). The recursive nature
of the apical activity can be expressed by the following formula (called
a cell division system [22]):

AL → SL | AR AR → AL | SR

This notation means that the cell on the left side of the arrow produces
two daughter cells separated by a wall.
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Figure 7.8: Apical production of segments. The labels AR and AL denote
apical cells producing right segment SR and left segment SL, respectively.
Dashed lines indicate the newly created division wall. The superscripts rep-
resent segment age. The internal structure of segments is not shown.

Figure 7.9: Developmental sequence of a Microsorium segment

In describing the structure of a segment, we distinguish between pericli- Division
pattern of
segments

nal and anticlinal walls. Intuitively, periclinal walls are approximately
parallel to the apical front of the thallus, and anticlinal walls are per-
pendicular to this front. A more formal definition follows.

• In a primary segment, the apical front wall and one or more walls
opposing it are periclinal walls. The remaining walls are anticlinal
walls.

• A division wall attached to two periclinal walls is an anticlinal
wall, and vice-versa.

In Microsorium, a wall is never attached to a periclinal wall on one
side and an anticlinal wall on the other side, so the above definition
comprises all possible cases.

Microscopic observations of growing Microsorium gametophytes re-
veal that most segments follow the same developmental sequence, shown
diagrammatically in Figure 7.9. The primary segment cell Q1 is first
divided by a periclinal wall into two cells, Q2 and Q3. Subsequently, the
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C

C

C

C

Figure 7.10: Developmental sequence of a Microsorium gametophyte
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ω :
→
A
←
Dx
→
b

l1 :
→
a → ←

A [+
←
b ]
→
i

l2 :
→
b → →

e [− →
B ] x [+

→
h ]
→
d

l3 :
→
d → →

f

l4 :
→
f →

→
g [− ←

h ] x [+
→
h ]
→
d

l5 :
→
h → x [− →

f ] x

l6 :
→
i → →

c

l7 :
→
c → →

i [+
←
f ]
→
i

l8 :
→
e → x [+ x] x

l9 :
→
g → x [− x] x [+ x] x

r1 :
→
A → ←

a [− ←
B ]
→
I

r2 :
→
B → →

E [+
→
b ] x [− →

H ]
→
D

r3 :
→
D → →

F

r4 :
→
F → →

G [+
←
H ] x [− →

H ]
→
D

r5 :
→
H → x [+

→
F ] x

r6 :
→
I → →

C

r7 :
→
C → →

I [− ←
F ]
→
I

r8 :
→
E → x [− x] x

r9 :
→
G → x [+ x] x [− x] x

Figure 7.10 (continued): Developmental sequence of Microsorium



158 Chapter 7. Modeling of cellular layers

basal cell Q3 is divided by another periclinal wall into two “terminal”
cells T that do not undergo further divisions. At the same time, the cell
Q2 lying on the thallus border is divided by an anticlinal wall into two
cells of type Q1. Each of these cells divides in the same way as the pri-
mary cell. Consequently, the recursive nature of segment development
can be captured by the following cell division system:

Q1 →
Q2

Q3

Q2 → Q1 | Q1 Q3 →
T

T

In the above rules, a horizontal bar denotes a periclinal wall between
cells, and a vertical bar denotes an anticlinal wall.

The development of the Microsorium thallus is a result of concur-Development of
the thallus rent divisions of the apical and segment cells. A single division of the

apical cell corresponds to a single step in segment development. A de-
velopmental sequence that combines the activity of the apex and the
segments is shown in Figure 7.10. This figure also reveals offsets be-
tween neighboring walls. It can be assumed that periclinal division
walls form S-offsets in the segments on the right side of the apex and
Z-offsets in the segments on the left side.

In order to capture the development of Microsorium using the for-Map L-system
malism of map L-systems, it is necessary to identify all combinations
of cells that may lie on both sides of a wall. Careful examination
of these combinations yields the wall labeling scheme shown in Fig-
ure 7.10. Two walls have the same label if and only if they divide in
the same way.2 The uppercase letters apply to right segment walls, and
the corresponding lowercase letters denote symmetric walls in the left
segments. A comparison of pairs of subsequent structures yields the
L-system in the figure.

Apical cell division results from the application of productions r1

and l2 (creation of a right segment) or l1 and r2 (creation of a left
segment). Subsequent cell divisions in right and left segments proceed
symmetrically. The development of a right segment is examined in
detail.

The insertion of wall segment B creates the first cell Q1 of segment
SR

(1) (cf. Figure 7.8). Concurrently, wall D on the opposite side of the
segment is transformed into F (step 1). This transformation introduces
a one-step delay before the application of production r4 which, together
with r2, splits cell Q1 into Q2 and Q3 by the first periclinal wall H (step
2). As the derivation progresses, production r4 inserts subsequent per-
iclinal walls H between pairs of anticlinal walls F (step 4). Production

2It is conceivable to formulate an algorithm that would assign labels consistent
with the above rule automatically. However, the labeling scheme given in Figure 7.10
was obtained “by hand.”
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Figure 7.11: Developmental sequence of a basal Microsorium segment

r3 introduces a delay needed to create walls F , which are inserted be-
tween periclinal walls H and apical walls I using productions r5 and r7.
Production r6 plays a role analogous to r3 — it introduces a one-step
delay into the cycle which creates markers F at the apical front of the
segment. Thus, periclinal walls H and anticlinal walls F are produced
alternately, in subsequent derivation steps. The last two productions,
r8 and r9, create terminal walls x that do not undergo further changes.
The first such wall is inserted between walls labeled G and E during
derivation step 3. The subsequent walls x are inserted every second
step between pairs of walls G; only production r9 is applied in these
cases.

The L-system in Figure 7.10 was formulated under the assumption Basal segments
that all segments develop in the same way. However, in a real organism
the two oldest segments, situated at the thallus base, form a modified
pattern with less extensive cell divisions. The developmental sequence
of a right basal segment is shown in Figure 7.11. The corresponding
cell division system is given below.

Q1 →
Q2

Q3

Q2 → Q1 | T Q3 →
T

T

The development of a Microsorium gametophyte including basal
segments is captured by Figure 7.12. Only productions describing the
development of the right side of the thallus are given. Their prede-
cessors are denoted by uppercase letters. The corresponding lowercase
productions, which complete the L-system definition, can be obtained
by switching the “case” of letters and the orientation of markers. Wall
directions remain unchanged. For example, the right-side production

rx :
→
P →

←
A[−

→
b ]C
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r1 :
→
A → ←

a [− ←
B ]
→
I

r2 :
→
B → →

E [+
→
b ] x [− →

H ]
→
D

r3 :
→
D → [− →

M ]
→
F

r4 :
→
F → →

G [+
←
H ] x [− →

H ]
→
D

r5 :
→
H → x [+

→
F ] x

r6 :
→
I → →

C

r7 :
→
C → →

I [− ←
F ]
→
I

r8 :
→
E → x [− x] x

r9 :
→
G → x [+ x] x [− x] x

r10 :
→
J → →

L

r11 :
→
K → →

N

r12 :
→
L → x [+

←
M ] x

r13 :
→
M → x [+

→
L ] x

r14 :
→
N → →

O

r15 :
→
O → x [+

←
L ]
→
N

Figure 7.12: The initial map and productions for the right side of a Microso-
rium linguaeforme with basal segments

corresponds to the left-side production

lx :
→
p → ←

a [+
→
B]c.

Additional examples can be found by comparing the left and right
columns of the L-system in Figure 7.10.

Assuming the starting map specified by Figure 7.12, a simulated
developmental sequence interpreted using the dynamic method to de-
termine cell shape is given in Figure 7.13. Different colors are used
to indicate the apical cell, the alternating “regular” segments, and the
basal segments. A comparison of the last developmental stage with aModel

validation photograph of a real gametophyte (Figure 7.14) shows good correspon-
dence between the model and reality with respect to structure topology,
the relative sizes and shapes of cells, and the overall shape of the thal-
lus. This result is particularly interesting from a biological perspective,
since it indicates that genetically controlled cell division patterns play
an important role in determining the shape of a structure.
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Figure 7.13: Simulated development of Microsorium linguaeforme

Figure 7.14: Microphotograph of Microsorium linguaeforme at magnification
70x
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Figure 7.15: Developmental sequence of a Dryopteris segment

7.4 Dryopteris thelypteris

Gametophytes of other fern species follow a similar developmental pat-
tern, with the apex producing segments alternately to the left and
right. However, the cell division patterns within segments vary between
species yielding different thalli shapes. For example, Figure 7.15 shows
segment development in Dryopteris thelypteris. The corresponding cell
division system is given below.

Q1 →
Q2

Q3

Q2 →
Q4

Q3

Q3 →
T

T
Q4 → Q1 | Q1

A developmental cycle of length 3, starting at cell Q1, produces
two new cells Q1 separated by an anticlinal wall and a sequence of
four terminal cells T separated by periclinal walls. A developmental
sequence that combines the activity of the apex and the segments is
shown in Figure 7.17. As in the case of the map L-system in Figure 7.12,
only productions for the right side of the thallus are shown.

Apical cell division results from the application of productions r1Map L-system
and l2 (creation of a right segment) or l1 and r2 (creation of a left
segment). The subsequent cell divisions proceed in a symmetric way
in right and left segments. The development of a right segment is
described below.

The insertion of wall segment B creates the first cell Q1 of segment
SR

(1) (cf. Figure 7.8). Concurrently, wall D on the opposite side of
the segment is transformed by production r6 into FG (step 1). This
transformation introduces a one-step delay before the application of
production r7 which, together with r2, splits cell Q1 into Q2 and Q3 by
the first periclinal wall x (step 2). Meanwhile, production r3 replaces
wall C by wall J (step 1), after which r4 replaces J by E (step 2). This
introduces a two-step delay before cell Q3 is subdivided periclinally into
two cells T by production r5 (step 3). In the same step, productions r6

and r9 subdivide cell Q2 into cells Q3 and Q4, separated by periclinal
wall H. Wall O from step 1 is transformed into wall R by productions
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Figure 7.16: Simulated development of Dryopteris thelypteris

r15 (step 2) and r16 (step 3). Walls R and H are replaced by r17 and
r14, resulting in the first anticlinal division of cell Q4 into two cells Q1

by wall I (step 4). At the same time, productions r5 and r6 split cell
Q3 periclinally into two cells T . In the following derivation steps, each
of the newly created cells Q1 undergoes a sequence of changes similar
to that described above. Production r8 introduces a one-step delay
before Q1 is subdivided into Q2 and Q3 using r9 and r10 (analogous
to r2 and r7). Productions r11 and r12 play a role similar to r5 and
r6, while production r13 introduces a delay. Walls labeled x do not
undergo further changes and cells T do not subdivide. A simulated
developmental sequence generated by the L-system in Figure 7.17 using
the dynamic method to determine cell shape is given in Figure 7.16.

A comparison of Microsorium and Dryopteris gametophytes (either Microsorium
vs. Dryopterisreal or modeled) indicates that different division patterns of segment

cells have a large impact on the overall thalli shapes. In Microsorium,
the number of marginal cells, situated at the apical front of a segment, is
doubled every second derivation step. The segments are approximately
triangular, with a wide apical front, which results in the circular thallus
shape. The apical front of Dryopteris segments is comparatively less
developed. The number of marginal cells is doubled only every third
step, and the segments grow faster in length. The resulting thallus
shape is concave.
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Figure 7.17: Developmental sequence of a Dryopteris gametophyte
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ω :
→
A
←
D
←
C
→
b

r1 :
→
A → ←

a [− ←
B ]
→
O

r2 :
→
B → →

E [+
→
b ]
→
C [− x]

→
D

r3 :
→
C → ←

J

r4 :
→
J → →

E

r5 :
→
E → x [− x] x

r6 :
→
D → →

F [− →
H ]
→
G

r7 :
→
F → x [+ x] x [− x]

←
J

r8 :
→
G → →

K

r9 :
→
K → →

E [+
←
H ]
→
C [− x]

→
D

r10 :
→
I → →

L [+ x] x [− x]
→
M

r11 :
→
L → x [+ x] x [− x] x

r12 :
→
M → →

L [+
←
H ] x [− →

H ]
→
N

r13 :
→
N → →

I

r14 :
→
H → x [+

→
I ] x

r15 :
→
O → →

P

r16 :
→
P →

→
Q

r17 :
→
Q → →

O [− ←
I ]
→
O

Figure 7.17 (continued): Developmental sequence of Dryopteris
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In order to quantify the relationship between segment cell division
pattern and thallus shape, de Boer [22] proposed an empirical measure
called periclinal ratio. It is based on the following considerations:

• anticlinal growth takes place mainly along the margin and is ex-
ponential since all marginal cells divide; and

• periclinal growth of a segment is linear, as cells displaced away
from the margin eventually stop dividing.

Since the division pattern is recursive, the average ratio of the numbers
of marginal cells in neighboring segments converges to a constant A.
Similarly, the difference between the numbers of cells along the pericli-
nal boundary of two neighboring segments converges to a constant P .
By computer simulation [22], it was found that if the periclinal ratio
P/A is smaller than 1.25, the apical front is convex as in the case of
Microsorium linguaeforme. In contrast, if P/A is larger than 2.0, the
simulated structure develops a concave apical front, corresponding to a
heart-shaped thallus as in Dryopteris thelypteris. These results relate
local growth to global shape. Periclinal ratios from 1.25 to 2.0 were not
studied in detail.

7.5 Modeling spherical cell layers

Although the scope of this book is limited to plants, it is interesting
to note that the formalism of L-systems can be applied also to simu-
late some developmental processes in animals. For example, during the
cleavage stage of development, an animal embryo consists of a singleAnimal

embryos layer of cells that covers the surface of a spherical cavity. This structure
is known as the blastula [6]. The cells divide synchronously in a regular
pattern up to and including the 64-cell stage (6th cleavage). This devel-
opment can be captured using an mBPMOL-system operating on the
surface of a sphere rather than on a plane. To this end, cell walls are
represented as great circle arcs connecting vertices that are constrained
to the sphere surface.

The extension of the dynamic interpretation method from the plane
to the surface of a sphere requires few changes. Osmotic pressure and
wall tension are calculated as before. Since the resulting force may
displace a vertex away from the surface of the sphere, the actual vertex
position is found by projecting the displaced point back to the sphere.
During the cleavage stage, cells of embryos do not expand, thus the
overall size of the sphere is constant.

For example, deBoer [22] proposed the map L-system in Figure 7.18Patella vulgata
to model the development of a snail embryo, Patella vulgata, according
to data presented by Biggelaar [150]. The starting map and develop-
mental sequence are shown in Figure 7.18, while Figure 7.19 presents
an alternative rendering. Each cell is approximated by a sphere cen-
tered at the point obtained by raising the center of gravity of the cell
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p1 : A → b[−a]x[+a]b
p2 : a → B[+A]x[−A]B
p3 : B → a
p4 : b → A

p5 :
→
C → →

D [+a]
→
E

p6 :
→
D → →

C [−A]x

p7 :
→
E → →

C

p8 : F → ←
E [−a]G[+a]

→
E

p9 : G → J
p10 : H → I
p11 : I → B[−A]x[+A]B
p12 : J → b[+a]x[−a]b

p13 : Z → →
C [−F]H[+F]

←
C

Figure 7.18: Developmental sequence of Patella vulgata (equatorial view)
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vertices to the surface of the underlying spherical cavity. The radius is
the maximum distance from the center of gravity to the cell vertices.
A comparison of the Patella model at the 16-cell stage (bottom left
of Figure 7.19) with an electron microscope image (Figure 7.20) shows
good correspondence between the model and reality.

7.6 Modeling 3D cellular structures

The previous sections presented a method for modeling cellular lay-Cellworks
ers extending in a plane or on the surface of a sphere. However, real
cellular structures are three-dimensional objects. In order to capture
the three-dimensional aspect of cellular layers and model more complex
structures, Lindenmayer [85] proposed an extension of map L-systems
called cellwork L-systems. The notion of a cellwork is characterized as
follows.

• A cellwork is a finite set of cells. Each cell is surrounded by one
or more walls (faces).

• Each wall is surrounded by a boundary consisting of a finite,
circular sequence of edges that meet at vertices.

• Walls cannot intersect without forming an edge, although there
can be walls without edges (in the case of cells shaped as spheres
or tori).

• Every wall is part of the boundary of a cell, and the set of walls
is connected.

• Each edge has one or two vertices associated with it. The edges
cannot cross without forming a vertex, and there are no vertices
without an associated edge.

• Every edge is a part of the boundary of a wall, and the set of
edges is connected.

Note that the terms cell and wall have different meanings in the context
of cellworks than in the context of maps.

The development of three-dimensional structures is captured usingmBPCOL-
system an extension of mBPMOL-systems called marker Binary Propagating

Cellwork OL-systems [42]. An mBPCOL-system G is defined by a finite
alphabet of edge labels Σ, a finite alphabet of wall labels Γ, a starting
cellwork ω, and a finite set of edge productions P . The initial cellwork ω
is specified by a list of walls and their bounding edges. As in the case of
mBPMOL-systems, edges may be directed or neutral. Each production
is of the form A : β → α, where the edge A ∈ Σ is the predecessor, the
string β ∈ {Γ+, ∗} is a list of applicable walls (* denotes all walls), and
the string α is the successor, which is composed of edge labels from Σ,
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Figure 7.19: Simulated development of Patella vulgata

Figure 7.20: An electron microscope image of Patella vulgata
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Figure 7.21: The phases of a derivation step

wall labels from Γ and the symbols [ and ]. The symbols outside square
brackets describe the subdivision pattern for the predecessor. Pairs of
matching brackets [ and ] delimit markers that specify possible attach-
ment sites for new edges and walls. As in the two-dimensional case,
arrows indicate the relative directions of successor edges and markers
with respect to the predecessor edge. The list β contains all walls into
which a marker should be inserted. In addition to the labels for edges
and markers, a production successor specifies the labels of walls that
may be created as a result of a derivation step.

The syntax of a production is best explained using an example. TheProduction
syntax production

→
A : 14 →

→
D
←
C2[

→
E5]

→
B3F

applies to an edge A if it belongs to one or more walls labeled 1 or
4 (Figure 7.21a). The predecessor edge is subdivided into four edges
D, C, B and F . During a derivation step, marker E is introduced
into all walls of type 1 or 4 that share edge A (Figure 7.21b), and
can be connected with a matching marker inserted into the same wall
by another production. As a result, the wall will split into two. The
daughter wall having C as one of its edges will be labeled 2, and the
wall having B as an edge will be labeled 3 (Figure 7.21c). Markers E
can be connected only if both productions assign labels to the daughter
walls in a consistent way. Otherwise, the markers are considered non-
matching and are discarded. If several walls bounding a cell split in
such a way that the sequence of new edges forms a closed contour, a
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Figure 7.22: Example of consistent edge productions

new wall bound by these edges may be created. In order for this to
occur, all markers involved must specify the same label for the new
wall, 5 in this example (Figure 7.21d).

The limitation of the scope of a production to specific walls may
create a consistency problem while rewriting edges. For instance, as-
sume that walls 1 and 2 share edge A and the following productions
are in P :

p1 :
→
A : 1 →

→
C
←
E

p2 :
→
A : 2 → A

→
B

Productions p1 and p2 are inconsistent since they specify two different
partitions of the same edge. It is assumed that the mBPCOL-systems
under consideration are free of such inconsistencies. This does not
preclude the possibility of applying several productions simultaneously
to the same edge. For example, a production pair,

p1 :
→
A : 1 →

→
C2[

→
F 3]

←
E4

p2 :
→
A : 2 →

→
C5[

←
D6]

←
E7,

consistently divides edge A into segments C and E, although the mark-
ers inserted into walls 1 and 2 are different (Figure 7.22).

According to the above discussion, a derivation step in an mBPCOL- Derivation
system consists of three phases.

• Each edge in the cellwork is replaced by successor edges and mark-
ers using one or more productions in P .

• Each wall is scanned for matching markers. If a match inducing
a consistent labeling of daughter cells is found, the wall is subdi-
vided. The selection of matching markers is done by the system.
Unused markers are discarded.

• Each cell is scanned for a circular sequence of new division edges.
If a cycle assigning the same label to the division wall is found, it is
used to bound the wall that will divide the cell into two daughter
cells. If different possibilities exist, the edges are selected by the
system.
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p1 : A : 1 → B1[A2]B1
p2 : A : 2 → B2[C2]B2
p3 : B : * → A

Figure 7.23: Example of a cellwork L-system

A wall may be subdivided more than once as long as new division edges
do not intersect and a consistent labeling of daughter walls is possible.
In contrast, a cell may be divided only once in any derivation step.

For example, Figure 7.23 presents a three-dimensional extension ofExample
the map L-system from Figure 7.2. In the first derivation step, produc-
tion p1 divides walls labeled 1, and production p2 divides walls labeled
2. The inserted edges form a cycle that divides the cell with a new wall
labeled 2. In the subsequent steps this process is repeated, generating
a pattern of alternating division walls. Production p3 introduces the
necessary delay.

The dynamic method for interpreting map L-systems is extended toDynamic
interpretation cellwork L-systems using the following assumptions:

• the structure is represented as a three-dimensional network of
masses corresponding to cell vertices, connected by springs which
correspond to cell edges,

• the springs are always straight and obey Hooke’s law,

• for the purpose of force calculations, walls can be approximated
by flat polygons,

• the cells exert pressure on their bounding walls; the pressure on
a wall is directly proportional to the wall area and inversely pro-
portional to the cell volume,
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• the pressure on a wall is divided evenly between the wall vertices,

• the motion of masses is damped, and

• other forces are not considered.

The total force �F T acting on a vertex X is given by the formula

�FT =
∑
e∈E

�Fe +
∑

w∈W

�Fw + �Fd,

where �Fe are forces contributed by the set of edges E incident to X,
�Fw are forces contributed by the set of walls W incident to X, and
�Fd = −b�v is a damping force. The forces �Fe act along the cell edges and
represent wall tension. The forces �Fw are due to the pressure exerted
by the cells on their bounding walls. The total force of pressure �P
exerted by a cell on a wall w has direction normal to w and is equal
to p · A, where p is the internal cell pressure and A is the wall area.
Calculation of the polygon area proceeds as in the two-dimensional
case. The pressure p is assumed to be inversely proportional to the
cell volume, p ∼ V −1, which corresponds to the equation describing
osmotic pressure (Section 7.2). The volume V of a cell is calculated by
tesselating the cell into tetrahedra. The resulting differential equations
are formed and solved as in the two-dimensional case.

A division pattern that frequently occurs in epidermal cell structures Epidermal cells
is described by the L-system in Figure 7.24, based on a cyclic cellwork
L-system (a slightly different formalism) proposed by Lindenmayer [85].
Productions p1, p2, p6 and p7 are responsible for cell divisions, while the
remaining productions introduce delays such that the division pattern
is staggered.

On the surface, the cellular structures analyzed in this chapter may
appear quite unrelated to the models discussed previously. However,
a closer inspection reveals many analogies. For example, consecutively
created segments of a fern gametophyte exhibit a phase effect corre-
sponding to that observed in inflorescences. Furthermore, parts of an
older gametophyte situated near the apex have the same topology as
the entire thallus at an earlier developmental stage, which associates
the recursive structures generated by map or cellwork L-systems with
self-similar patterns created using string L-systems. As observed by
Oppenheimer [105], self-similarity appears to be one of the general prin-
ciples organizing the world of botany. The next chapter discusses this
topic in more detail.
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p1 : A : 123 → C3[E1]B2[D1]C3
p2 : A : 4 → CB4[F1]C4
p3 : B : ∗ → A
p4 : C : ∗ → B
p5 : E : ∗ → D
p6 : F : 123 → HGH
p7 : F : 4 → H4[F1]G4[F1]H4
p8 : G : ∗ → F
p9 : H : ∗ → G

Figure 7.24: Developmental sequence of epidermal cells: (a) The starting
cellwork; (b), (d) and (f) cellworks immediately after cell divisions; (c), (e)
and (g) the corresponding cellworks at equilibrium



Chapter 8

Fractal properties of plants

What is a fractal? In his 1982 book, Mandelbrot defines it as a set with Fractals vs.
finite curvesHausdorff-Besicovitch dimension DH strictly exceeding the topological

dimension DT [95, page 15]. In this sense, none of the figures presented
in this book are fractals, since they all consist of a finite number of
primitives (lines or polygons), and DH = DT . However, the situation
changes dramatically if the term “fractal” is used in a broader sense [95,
page 39]:

Strictly speaking, the triangle, the Star of David, and the
finite Koch teragons are of dimension 1. However, both
intuitively and from the pragmatic point of view of the sim-
plicity and naturalness of the corrective terms required, it is
reasonable to consider an advanced Koch teragon as being
closer to a curve of dimension log 4/log 3 than to a curve
of dimension 1.

Thus, a finite curve can be considered an approximate rendering
of an infinite fractal as long as the interesting properties of both are
closely related. In the case of plant models, this distinctive feature is
self-similarity.

The use of approximate figures to illustrate abstract concepts has a Fractals vs.
plantslong tradition in geometry. After all, even the primitives of Euclidean

geometry — a point and a line — cannot be drawn exactly. An in-
teresting question, however, concerns the relationship between fractals
and real biological structures. The latter consist of a finite number of
cells, thus are not fractals in the strict sense of the word. To consider
real plants as approximations of “perfect” fractal structures would be
acceptable only if we assumed Plato’s view of the supremacy of ideas
over their mundane realization. A viable approach is the opposite one,
to consider fractals as abstract descriptions of the real structures. At
first sight, this concept may seem strange. What can be gained by Complexity of

fractalsreducing an irregular contour of a compound leaf to an even more ir-
regular fractal? Would it not be simpler to characterize the leaf using
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a smooth curve? The key to the answer lies in the meaning of the term
“simple.” A smooth curve may seem intuitively simpler than a fractal,
but as a matter of fact, the reverse is often true [95, page 41]. Accord-
ing to Kolmogorov [80], the complexity of an object can be measured
by the length of the shortest algorithm that generates it. In this sense,
many fractals are particularly simple objects.

The above discussion of the relationship between fractals and plantsPrevious
viewpoints did not emerge in a vacuum. Mandelbrot [95] gives examples of the re-

cursive branching structures of trees and flowers, analyzes their
Hausdorff-Besicovitch dimension and writes inconclusively “trees may
be called fractals in part.” Smith [136] recognizes similarities between
algorithms yielding Koch curves and branching plant-like structures,
but does not qualify plant models as fractals. These structures are pro-
duced in a finite number of steps and consist of a finite number of line
segments, while the “notion of fractal is defined only in the limit.” Op-
penheimer [105] uses the term “fractal” more freely, exchanging it with
self-similarity, and comments: “The geometric notion of self-similarity
became a paradigm for structure in the natural world. Nowhere is this
principle more evident than in the world of botany.” The approach pre-
sented in this chapter, which considers fractals as simplified abstract
representations of real plant structures, seems to reconcile these previ-
ous opinions.

But why are we concerned with this problem at all? Does the no-Fractals in
botany tion of fractals provide any real assistance in the analysis and modeling

of real botanical structures? On the conceptual level, the distinctive
feature of the fractal approach to plant analysis is the emphasis on
self-similarity. It offers a key to the understanding of complex-looking,
compound structures, and suggests the recursive developmental mech-
anisms through which these structures could have been created. The
reference to similarities in living structures plays a role analogous to the
reference to symmetry in physics, where a strong link between conser-
vation laws and the invariance under various symmetry operations can
be observed. Weyl [159, page 145] advocates the search for symmetry
as a cognitive tool:

Whenever you have to deal with a structure-endowed entity
Σ, try to determine its group of automorphisms, the group
of those element-wise transformations which leave all struc-
tural relations undisturbed. You can expect to gain a deep
insight into the constitution of Σ in this way.

The relationship between symmetry and self-similarity is discussed
in Section 8.1. Technically, the recognition of self-similar features of
plant structures makes it possible to render them using algorithms de-
veloped for fractals as discussed in Section 8.2.
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Figure 8.1: The Sierpiński gasket is closed with respect to transformations
T1, T2 and T3 (a), but it is not closed with respect to the set including the
inverse transformations (b).

8.1 Symmetry and self-similarity

The notion of symmetry is generally defined as the invariance of a con-
figuration of elements under a group of automorphic transformations.
Commonly considered transformations are congruences, which can be
obtained by composing rotations, reflections and translations. Could
we extend this list of transformations to similarities, and consider self-
similarity as a special case of symmetry involving scaling operations?

On the surface, this seems possible. For example, Weyl [159, page 68]
suggests: “In dealing with potentially infinite patterns like band orna-
ments or with infinite groups, the operation under which a pattern is
invariant is not of necessity a congruence but could be a similarity.”
The spiral shapes of the shells Turritella duplicata and Nautilus are
given as examples. However, all similarities involved have the same
fixed point. The situation changes dramatically when similarities with
different fixed points are considered. For example, the Sierpiński gasket
is mapped onto itself by a set of three contractions T1, T2 and T3 (Fig-
ure 8.1a). Each contraction takes the entire figure into one of its three
main components. Thus, if A is an arbitrary point of the gasket, and
T = Ti1Ti2 . . . Tin is an arbitrary composition of transformations T1, T2

and T3, the image T (A) will belong to the set A. On the other hand,
if the inverses of transformations T1, T2 and T3 can also be included
in the composition, one obtains points that do not belong to the set A
nor its infinite extension (Figure 8.1b). This indicates that the set of
transformations that maps A into itself forms a semigroup generated
by T1, T2 and T3, but does not form a group. Thus, self-similarity is a
weaker property than symmetry, yet it still provides a valuable insight
into the relationships between the elements of a structure.
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Figure 8.2: The fern leaf from Barnsley’s model [7]

8.2 Plant models and iterated function sys-

tems

Barnsley [7, pages 101–104] presents a model of a fern leaf (Figure 8.2),
generated using an iterated function system, or IFS. This raises a ques-
tion regarding the relationship between developmental plant models
expressed using L-systems and plant-like structures captured by IFSes.
This section briefly describes IFSes and introduces a method for con-
structing those which approximate structures generated by a certain
type of parametric L-system. The restrictions of this method are ana-
lyzed, shedding light on the role of IFSes in the modeling of biological
structures.

By definition [74], a planar iterated function system is a finite setIFS definition
of contractive affine mappings T = {T1, T2, . . . , Tn} which map the
plane R×R into itself. The set defined by T is the smallest nonempty
set A, closed in the topological sense, such that the image y of any
point x ∈ A under any of the mappings Ti ∈ T also belongs to A.
It can be shown that such a set always exists and is unique [74] (see
also [118] for an elementary presentation of the proof). Thus, starting
from an arbitrary point x ∈ A, one can approximate A as a set of
images of x under compositions of the transformations from T . On
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Figure 8.3: A comparison of three attracting methods for the rendering of
a set defined by an IFS: (a) deterministic method using a balanced tree of
depth n = 9 with the total number of points N1 = 349, 525, (b) deterministic
method using a non-balanced tree with N2 = 198, 541 points, (c) stochastic
method with N3 = N2 points

the other hand, if the starting point x does not belong to A, the con-
secutive images of x gradually approach A, since all mappings Ti are
contractions. For this reason, the set A is called the attractor of the
IFS T . The methods for rendering it are based on finding the images Rendering

methodsTik(Tik−1
(. . . (Ti1(x)) . . .)) = xTi1 . . . Tik−1

Tik , and are termed attracting
methods. According to the deterministic approach [123], a tree of trans-
formations is constructed, with each node representing a point in A.
Various strategies, such as breadth-first or depth-first, can be devised to
traverse this tree and produce different intermediate results [60]. If the
transformations in T do not have the same scaling factors (Lipschitz
constants), the use of a balanced tree yields a non-uniform distribu-
tion of points in A. This effect can be eliminated by constructing a
non-balanced tree, using a proper criterion for stopping the extension
of a branch [60]. An alternative approach for approximating the set A
is termed the chaos game [7] (see also [107, Chapter 5]). In this case,
only one sequence of transformations is constructed, corresponding to
a single path in the potentially infinite tree of transformations. The
transformation applied in each derivation step is selected at random.
In order to achieve a uniform distribution of points in the attractor,
the probability of choosing transformation Ti ∈ T is set according to
its Lipschitz constant. Figure 8.3 illustrates the difference between the
stochastic and deterministic methods of rendering the attractor. The
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underlying IFS consists of four transformations, given below using ho-
mogeneous coordinates [40]:

T1 =


 0.00 0.00 0.00

0.00 0.16 0.00
0.00 0.00 1.00




T2 =


 0.20 0.23 0.00
−0.26 0.22 0.00

0.00 1.60 1.00




T3 =


 −0.15 0.26 0.00

0.28 0.24 0.00
0.00 0.44 1.00




T4 =


 0.85 −0.04 0.00

0.04 0.85 0.00
0.00 1.60 1.00




Other methods for the rendering of the set A, defined by an inter-
ated function system T , include the repelling or escape-time method
and the distance method [60, 118]. Both methods assign values to
points outside of A. The first method determines how fast a point is
repelled from A to infinity by the set of inverse transformations T−1

i ,
where Ti ∈ T . An example of the application of this method, with
escape time values represented as a height field, is shown in Figure 8.4.
The second method computes the Euclidean distance of a point from
the attractor A.

The problem of constructing an IFS that will approximate a branch-IFS
construction ing structure modeled using an L-system can now be considered. This

discussion focuses specifically on structures that develop in a biologi-
cally justifiable way, by subapical branching (Section 3.2). The com-
pound leaf shown in Figure 5.11a on page 129 will be used as a working
example. In this case, the apical delay D is equal to zero, and the
L-system can be represented in the simplified form:

ω : A
p1 : A : ∗ → F (1)[+A][−A]F (1)A
p2 : F (a) : ∗ → F (a ∗ R)

(8.1)

Figure 8.4: Fern dune �
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Figure 8.5: Initial sequences of structures generated by the L-systems spec-
ified in equations (8.1) and (8.2)

This L-system operates by creating segments of constant size, then
increasing their length by constant factor R in each derivation step
(Figure 8.5a). As discussed in Section 1.10.3, a structure with the
same proportions can be obtained by successively appending segments
of decreasing length (Figure 8.5b):

ω : A(1)
p1 : A(s) : ∗ → F (s)[+A(s/R)][−A(s/R)]F (s)A(s/R) (8.2)

Let An(s) denote the structure generated by module A(s) in n ≥ 1
derivation steps. According to production p1, the following equality
holds:

An(s) = F (s)[+An−1(s/R)][−An−1(s/R)]F (s)An−1(s/R) (8.3)
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Figure 8.6: Illustration of equation (8.4), with µ1 = F (1) − (45) and µ2 =
[−(45)F (0.5)]F (0.5)

It is important to clearly distinguish between a parametric word µ (a Properties of
turtle
interpretation

string of modules) and its turtle interpretation J (µ) (a set of points in
the plane). The symbol M(µ) will be used to denote the transformation
induced by µ. This transformation moves the turtle from its initial
position and orientation to those resulting from the interpretation of
word µ. According to the definition of turtle interpretation (Chapter 1),
if a word µ is decomposed into subwords µ1 and µ2 such that µ2 does
not contain unbalanced right brackets, then

J (µ) = J (µ1µ2) = J (µ1) ∪ J (µ2)M(µ1). (8.4)

See Figure 8.6 for an illustration. By applying equation (8.4) to (8.3),
we obtain

J (An(s)) = J (F (s)) ∪
J (An−1(s/R))M(F (s)+) ∪
J (An−1(s/R))M(F (s)−) ∪ (8.5)

J (F (s))M(F (s)) ∪
J (An−1(s/R))M(F (s)F (s)),

which is true for any n ≥ 1. Now let A(s) be the limit of the sequence Passage to
infinityof sets J (An(s)) from equation 8.6,

A(s) = lim
n→∞J (An(s)).

At the limit we obtain:

A(s) = J (F (2s)) ∪ A(s/R)(T ′1 ∪ T ′2 ∪ T ′3), (8.6)
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where T ′1 = T (F (s)+), T ′2 = T (F (s)−), and T ′3 = T (F (2s)). Let
S(s/R) be the operation of scaling by s/R, then

A(s/R) = A(s)S(s/R).

By noting Ti = T ′iS(s/R) for i = 1, 2, 3, equation (8.6) can be trans-
formed to

A(s) = J (F (2s)) ∪ A(s)(T1 ∪ T2 ∪ T3). (8.7)

The solution of this equation with respect to A(s) is

A(s) = J (F (2s))(T1 ∪ T2 ∪ T3)
∗, (8.8)

where (T1 ∪ T2 ∪ T3)
∗ stands for the iteration of the union of transfor-

mations T1, T2 and T3. Equation (8.8) suggests the following method
for constructing the set (A(s)):

• create segment J (F (2s))

• create images of J (F (2s)) using transformations T1, T2, T3 and
their compositions

Equation (8.7) and the method of constructing the set A(s) based
on equation (8.8) are closely related to the definition of iterated function
systems stated at the beginning of this chapter. However, instead of
starting from an arbitrary point x ∈ A(s), the iteration begins with
the set J (F (2s)). Although this is simply a straight line segment, a
question arises as to how its generation can be incorporated into an
IFS. Two approaches can be distinguished.

The first approach is related to the notions of hierarchical iteratedControlled IFS
function systems discussed by Reuter [123] and recurrent IFSes intro-
duced recently by Barnsley [8]. The line segment J (F (2s)) is gener-
ated using an IFS, for example consisting of two scaling transformations
Q1 and Q2 which map it onto its upper and lower half (Figure 8.7a).
Subsequently, transformations T1, T2 and T3 are applied to create other
points of the set A(s). The order of transformation application is im-
portant. Transformations Q1 and Q2 are used solely for the purpose
of initial segment creation. They must not be applied after T1, T2 or
T3, since in this case they would affect the branching structure under
consideration. The admissible sequences of transformations can be de-
fined using a directed control graph (Figure 8.7b), and correspond to
the infinite set of paths starting at node a.1 The term controlled it-
erated function system (CIFS) denotes an IFS with restrictions on the
transformation sequences imposed by a control graph. Thus, noting
the angle increment associated with symbols + and − by δ, the fractal

1Formally, the sequence of admissible transformations is the regular language
accepted by the finite (Rabin-Scott) automaton represented by the graph in Fig-
ure 8.7b.
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Figure 8.7: Construction of the set A(S): (a) definition of an IFS {Q1, Q2}
that generates the initial line segment, (b) the control graph specifying the
admissible sequences of transformation application

approximation of the leaf in Figure 5.11a is given by the CIFS with the Resulting CIFS
control graph in Figure 8.7b and the transformations specified below:

Q1 =


 0.5 0 0

0 0.5 0
0 0 1


 Q2 =


 0.5 0 0

0 0.5 0
0 s 1




T1 =


 1/R cos δ 1/R sin δ 0

−1/R sin δ 1/R cos δ 0
0 s 1




T2 =


 1/R cos δ −1/R sin δ 0

1/R sin δ 1/R cos δ 0
0 s 1




T3 =


 1/R 0 0

0 1/R 0
0 2s 1




The second approach to the generation of the line segment J (F (2s)) Noninvertible
transforma-
tions

is consistent with the method applied by Barnsley to specify the fern
leaf in Figure 8.2. The idea is to map the entire branching structure
A(s) onto the line J (F (2s)). This can be achieved using a noninvertible
transformation Q which collapses all branches into a vertical line. The
scaling factor along the y axis is the ratio of the desired segment length
2s, and the limit height of the entire structure A(s),

h =
2s

1 − 1/R
.
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Figure 8.8: Two renderings of the compound leaf from Figure 5.11a, gener-
ated using iterated function systems

This last value is calculated as the limit of the geometric series with the
first term equal to 2s and the ratio equal to 1/R. Thus, the compound
leaf of Figure 5.11a is defined by an IFS consisting of transformation

Q =


 0 0 0

0 1 − 1/R 0
0 0 1




and transformations T1, T2 and T3 specified as in the case of the con-
trolled IFS.

Two fractal-based renderings of the set A(s) are shown in Fig-Rendering
examples ure 8.8. Figure 8.8a was obtained using the controlled IFS and a deter-

ministic algorithm to traverse the tree of admissible transformations.
Figure 8.8b was obtained using the “ordinary” IFS and the random
selection of transformations. Figure 8.9 shows another fractal-based
rendering of the same structure. The spheres have radii equal to the
distance from the sphere center to the leaf, within a specified ε.

Figure 8.9: Carrot leaf �
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L-system with elongating internodes

‖
L-system transformation

⇓
L-system with decreasing apices

‖
L-system analysis

⇓
Recurrent equation in the domain of strings

‖
Graphical interpretation

⇓
Recurrent equation in the domain of sets

‖
Passage to limit

⇓
An equation expressing the limit set as a union of
the limit object and reduced copies of itself

‖
Equation solution

⇓
An equation expressing the limit object as the im-
age of an initial object under an iteration of a
union of transformations

‖
Elimination of the initial object

⇓
A (controlled) IFS

Figure 8.10: Steps in the construction of an IFS given an L-system capturing
a developmental model
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It is instructive to retrace the logical construction that started with Conclusions
an L-system, and ended with an iterated function system which can
generate fractal approximations of the same object (Figure 8.10). An
analysis of the operations performed in the subsequent steps of this
construction reveals its limitations, and clarifies the relationship be-
tween strictly self-similar structures and real plants. The critical step
is the transformation of the L-system with elongating internodes to the
L-system with decreasing apices. It can be performed as indicated in
the example if the plant maintains constant branching angles as well as
fixed proportions between the mother and daughter segments, indepen-
dent of branch order. This, in turn, can be achieved if all segments in
the modeled plant elongate exponentially over time. These are strong
assumptions, and may be satisfied to different degrees in real plants.
Strict self-similarity is an abstraction that captures the essential prop-
erties of many plant structures and represents a useful point of reference
when describing them in detail.





Epilogue

This quiet place, reminiscient of Claude Monet’s 1899 painting Water-
lilies pool — Harmony in green, does not really exist. The scene was
modeled using L-systems that captured the development of trees and
water plants, and illuminated by simulated sunlight. It is difficult not
to appreciate how far the theory of L-systems and the entire field of
computer graphics have developed since their beginnings in the 1960’s,
making such images possible. Yet the results contained in this book are
not conclusive and constitute only an introduction to the research on
plant modeling for biological and graphics purposes. The algorithmic
beauty of plants is open to further exploration.

� Figure E.1: Water-lilies





Appendix A

Software environment for
plant modeling

This book is illustrated with images of plants which exist only as math-
ematical models visualized by means of computer graphics. The soft-
ware environment used to construct and experiment with these models
includes dozens of programs and hundreds of data files. This creates
the nontrivial problem of organizing all components for easy definition,
saving, retrieval and modification of the models. In order to solve it, the
idea of simulation was extended beyond the level of individual plants
to an entire laboratory in botany [98]. Thus, a user can create and
conduct experiments in a virtual laboratory by applying intuitive con-
cepts and techniques from the “real” world. As an operating system
defines the way a user perceives a computing environment, the virtual
laboratory determines a user’s perception of the environment in which
simulated experiments take place. In the future, a virtual laboratory
may complement, extend, or even replace books as a means for gather-
ing and presenting scientific information. Because of this potential, the
laboratory in which the research reported in this book was produced is
described here in more detail.

A.1 A virtual laboratory in botany

A virtual laboratory, like its “real” counterpart, is a playground for ex- User’s
perspectiveperimentation. It comes with a set of objects pertinent to its scientific

domain (in this case, plant models), tools which operate on these ob-
jects, a reference book and a notebook. Once the concepts and tools are
understood, the user can expand the laboratory by adding new objects,
creating new experiments, and recording descriptions in the notebook.
An experienced user can expand the laboratory further by creating and
installing new tools.
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Technically, a virtual laboratory is a microworld which can be ex-Laboratory =
microworld +
hypertext

plored under the guidance of a hypertext system. The term “microworld”
denotes an interactive environment for creating and conducting simu-
lated experiments. The guidance could be provided in the form of a
traditional book, but an electronic document is more suitable for inte-
gration with a microworld. In a sense, both components of the virtual
laboratory are described by Nelson in Dream Machines [104]. The pi-
oneering role of this book in introducing the concept of hypertext is
known, but under the heading The Mind’s Eye the notion of a mi-
croworld is also anticipated:

Suppose that you have a computer.
What sorts of things would you do with it?
Things that are imaginative

and don’t require too much else.
I am hinting at something.
You could have it make pictures and show you stuff
and change what it shows depending on what you do.

A virtual laboratory can be divided into two components: the ap-Requirements
plication programs, data files and textual descriptions that comprise
the experiments; and the system support that provides the framework
on which these domain-dependent experiments are built. The following
list specifies the features of this framework.

• Consistent organization of the lab. In the lab environment,
experiments are run by applying tools (programs) to objects (data
files). An object consists of files that are grouped together so
that they can be retrieved easily. The format of the objects is
sufficiently standardized to allow straightforward implementation
of common operations such as object saving and deletion.

• Inheritance of features. It is often the case that several ob-
jects differ only in details. For example, two lilac inflorescences
may differ only in the color of their petals. The mechanism of
inheritance is employed to store such objects efficiently.

• Version control. Interaction with an object during experimen-
tation may result in a temporary or permanent modification. In
the latter case, the user is able to decide whether the newly cre-
ated object replaces the old one or should be stored as another
version of the original object.

• Interactive manipulation of objects. The laboratory pro-
vides a set of general-purpose tools for manipulating object pa-
rameters. For example, objects can be modified using control
panels or by editing specific fields in a textual description of an
experiment.
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• Flexibility in conducting experiments. The user may apply
tools to objects in a dynamic way while an experiment is being
conducted. This can be contrasted to a static experiment de-
signed when the object is initially incorporated into the system.

• Guidance through the laboratory. A hypertext system im-
poses a logical organization on the set of objects, provides a
textual description of the experiments, and makes it possible to
browse through the experiments in many ways. Specific experi-
ments are invoked automatically when the corresponding text is
selected, in order to facilitate demonstrations and assist a novice
user.

So far, objects have been referred to in an intuitive way, relying Objects
on the analogy between a real and virtual laboratory. For example, if
our interest is in the development of the gametophyte Microsorium lin-
guaeforme, in a real laboratory we would experiment with a specimen
of the plant, while in a virtual laboratory we explore the corresponding
mathematical model. However, the analogy to real objects does not ex-
tend to the level of detailed object definition. Specific design decisions
are needed for software development purposes. In the current design, a
laboratory object is defined as a directory containing two types of files
and a subdirectory.

• The data files comprise our knowledge of a particular model.

• A specification file defines the data files which make up the object
and the tools which apply to them.

• A directory of extensions lists objects which inherit some features
of the current object.

The object-oriented file structure which provides the basis for lab op-
eration can be represented by a hierarchy of directories and files (Fig-
ure A.1).

The path of subdirectories leading to an object establishes the in- Inheritance of
featuresheritance structure for the lab. Inheritance is based on the idea of

specifying new objects in reference to objects which already exist [81].
The “old” object is called a prototype and the new one is its extension.
The extension contains only those files which are different from the
corresponding files in the prototype. Files that remain the same are
delegated to the prototype by establishing links. In other words, the
object directory will contain those files that are unique to the object,
and links to files that are inherited from its prototype (Figure A.2).
This approach saves space, facilitates creation of objects similar to the
prototype, and allows a single change in the prototype to propagate
through all descendents.
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Figure A.1: The hierarchical structure of objects

Figure A.2: A prototype and its extension. Shaded areas indicate links.
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Figure A.3: An object icon with menus

To conduct an experiment, all files that make up the selected object Version control
are copied to a temporary location called the lab table. Consequently,
manipulation of object parameters does not disturb the stored version.
When the experiment is finished, the user may save the results by
overwriting the original object or by creating an extension. In the
latter case, the files on the lab table are compared with those in the
prototype object; those files that differ from the prototype are saved,
and links to the remaining files are established automatically.

The ability to manipulate the parameters in an experiment easily is Object
manipulationan essential feature of the virtual laboratory. As a rule, all parameters

involved in an experiment are supplied to the tools through the object’s
data files. In order to modify a parameter, the user edits the appropri-
ate file, which is subsequently re-read by the application. Though the
editing of parameters can be accomplished using a text editor, in many
cases parameter modification can be performed more conveniently using
virtual control panels [114]. The current implementation of the labora-
tory provides the user with a general-purpose control manager which
creates panels according to user-supplied configuration files.

The user is able to apply a tool to an object as a whole, without Tool
applicationdetailed knowledge of the programs involved or the component files.

This is achieved through the object’s specification file which lists all
files associated with an object and the tools that can be applied to
them. This information is used to create a hierarchy of menus associ-
ated with an icon representing the object (Figure A.3). The end nodes
in the hierarchy invoke tools that operate on the object. For example,
selection of the item image followed by the item generate from the
menus in the figure would invoke the plant modeling program Pfg.

A user may browse through the objects in the lab by following either Browsing
the hierarchical structure of objects or hypertext links. The browser is
used to navigate through the hierarchy, moving down through succes-
sive extensions or up through previous levels. At any time, the user
may request that an object be placed on the lab table. The hypertext
document associated with the lab provides an alternative method of
browsing and a means of relating objects independent of the hierarchy.
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A.2 List of laboratory programs

The essential programs incorporated into the virtual laboratory in botany
are listed below.

• Plant and fractal generator (Pfg)
P. Prusinkiewicz and J. Hanan
Given an L-system, a set of viewing parameters and optional files
specifying predefined surfaces, Pfg generates the modeled struc-
ture by carrying out the derivation, then interpreting the resulting
string using turtle geometry. Both non-parametric and paramet-
ric L-systems are supported. The model can be visualized directly
on the screen of an IRIS workstation or output to a file. The first
mode of operation is used to experiment with the model interac-
tively and present developmental sequences. The output file can
be either in Postscript format, particularly suitable for printing
results such as fractal curves and inflorescence diagrams on a laser
printer, or in the format required by the ray-tracer Rayshade for
realistic rendering of the modeled structures.

• Modeling program for phyllotactic patterns (Spiral)
D. R. Fowler
Spiral is an interactive program for modeling organs with spiral
phyllotactic patterns. The user can choose between planar and
cylindrical patterns, and modify parameters which define model
geometry (Chapter 4). This technique is faster than “growing”
organs using parametric L-systems. Once an organ has been de-
signed, it can be expressed using an L-system and incorporated
into a plant structure.

• Interactive surface editor (Ise)
J. Hanan
Ise makes it possible to define and modify bicubic surfaces con-
sisting of one or several arbitrarily connected patches. The output
files produced by Ise are compatible with Pfg and Spiral.

• Modeling program for cellular structures (Mapl)
F. D. Fracchia
Mapl accepts the specification of a two-dimensional cell layer cap-
tured by a map L-system and generates the resulting developmen-
tal sequence using the dynamic method of map interpretation.
Options include map generation on the surface of a sphere, and
the simulation of development in three dimensions according to
a given cellwork L-system. As in the case of Pfg, the models can
be visualized directly on the screen or output to a file in either
Postscript or Rayshade format.
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• Control panel manager (Panel)
L. Mercer and A. Snider
This program creates control panels containing sliders and but-
tons, according to a configuration file provided by the user. Upon
activation of a control by the mouse, Panel generates a message
which indicates the corresponding control value. Application pro-
grams process this information and modify the appropriate pa-
rameters. For example, a panel can be used to control parameters
used by Pfg, Spiral, or Mapl.

• Ray tracer (Rayshade)
C. Kolb, Yale University

Rayshade reads a scene description from a text file, and renders it
using ray tracing. Scenes can be composed of primitives such as
planes, triangles, polygons, spheres, cylinders, cones and height
fields, grouped together to form objects. These objects can be
instantiated in other object definitions to create a hierarchical
description of a scene. Transformations including translation, ro-
tation and scaling, and a variety of procedural textures can be ap-
plied to any object. Extended light sources, simulation of depth
of field, and adaptive supersampling are supported. The program
uses 3D grids to partition object space for fast intersection tests.

• Previewer for the ray tracer (Preray)
A. Snider
Preray is a previewer for Rayshade used to provide a fast wire
frame rendering of a scene before committing time to ray tracing.
A control panel associated with Preray makes it possible to set
viewing parameters interactively.

• Modeling program based on Euclidean constructions (L.E.G.O.)
N. Fuller
L.E.G.O. makes it possible to model two- and three-dimensional
objects using geometric constructions. In the scope of this book,
L.E.G.O. was used to model man-made objects such as the Zinnia
vase and the Water-lilies bridge.

• Iterated function system generator (Ifsg)
D. Hepting

A fractal defined by an iterated function system is described by
a finite set of contractive affine transformations with an optional
finite state control mechanism. Ifsg accepts input from a file spec-
ifying the transformations and rendering information. The pro-
gram is capable of rendering by either attracting, distance-based
or escape-time methods. The output can be displayed directly
on an IRIS workstation or written to a file for further processing.
In the scope of this book, Ifsg was used to obtain results which
related plant models expressed using L-systems to fractals.
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Figure A.4: A virtual laboratory screen

Figure A.4 presents a sample screen of a Silicon Graphics IRIS 4D/60
workstation running some of the above programs within the virtual
laboratory framework. The icon in the top right corner represents the
laboratory browser which was used to select a sunflower plant as the
current object. The icon underneath and the associated menu were
subsequently applied to select tools which operate on the object. The
control panel in the bottom right corner of the screen is a part of the
surface editor Ise. The manipulated petal is displayed as a wire frame
in the window labeled Ise, and incorporated into a flower head by the
modeling program Spiral which presents its output in the window sun-
flower. The flower heads are in turn incorporated into a complete plant
model generated by Pfg and rendered using Rayshade in the window
plant.rle. The panel below that window makes it possible to choose
organs included in the model and change parameters related to the
angles of the branching structure. The metaphor of a virtual labora-
tory provides a uniform interface to various operations on the selected
plant, ranging from the modification of a petal to the rendering of the
complete model.
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About the figures

The following descriptions of the color images include details about the
pictures not described in the main text. Unless otherwise stated, figures
were created at the University of Regina.

Figure 1.19 [page 20] Three-dimensional Hilbert curve
F. D. Fracchia, P. Prusinkiewicz, N. Fuller
(1989)

This image was rendered using ray-tracing without shadows.

Figure 1.25 [page 26] Three-dimensional bush
P. Prusinkiewicz (1986)

Simple branching structure, rendered using the firmware of a Sil-
icon Graphics IRIS workstation. Total generating and rendering
time on IRIS 4D/20: 4 seconds.

Figure 1.28 [page 29] Flower field
P. Prusinkiewicz (1986)

The field contains four rows of four plants. The scene was ren-
dered with IRIS firmware, using depth-cueing to assign colors to
petals.

Figure 1.35 [page 45] Developmental stages of Anabaena catenula
J. Hanan, P. Prusinkiewicz (1989)

Figure 2.1 [page 52] Organic architecture
Ned Greene, NYIT (1989)
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An array of 300 x 300 x 300 voxel space automata was used to
track a polygonal model of a house. Rendering was performed
using a probabilistic radiosity method. See [54] for a full descrip-
tion.

Figure 2.3 [page 54] Acer graphics
Jules Bloomenthal, NYIT (1984)

A model of a maple tree. The basic branching structure was gen-
erated recursively. Limbs were modeled as generalized cylinders,
obtained by moving discs of varying radii along spline curves.
Real bark texture was digitized and used as a bump map. Leaf
texture was obtained by digitizing a photograph of a real leaf and
emphasizing the veins using a paint program. See [11] for details.

Figure 2.4 [page 54] Forest scene
Bill Reeves, Pixar (1984)

A scene from the film The Adventures of André and Wally B,
modeled using particle systems. Shading and shadows were ap-
proximated using probabilistic techniques. Visible surfaces were
determined using depth-sorting. See [119] for a full description.

Figure 2.5 [page 55] Oil palm tree canopy
CIRAD Modelisation Laboratory (1990)

A developmental model of oil palm trees, modeled using the
method originated by de Reffye and described from the graph-
ics perspective in [30].

Figure 2.10 [page 61] Medicine lake
F. K. Musgrave, C. E. Kolb, P. Prusinkiewicz,
B. B. Mandelbrot (1988)

A scene combining a fractal terrain model, a tree generated us-
ing L-systems, and a rainbow. The rainbow model was derived
from a simulation of refraction with dispersion of light through
an idealized raindrop. Procedural textures were applied to the
mountains, the water surface and a vertical plane modeling the
sky. See [101] for further details.

Figure 2.11 [page 62] Surrealistic elevator
A. Snider, P. Prusinkiewicz, N. Fuller (1989)

The elevator was modeled using L.E.G.O. The island is a su-
perquadratic surface. Procedural textures were applied to create
stars in the sky, craters on the moon, colored layers in the rock,
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waves in the lake and imperfections in the glass that covers the
elevator.

Figure 3.2 [page 69] Crocuses
J. Hanan, D. R. Fowler (1990)

The petals were modeled as Bézier surfaces, with the shapes de-
termined using Ise.

Figure 3.4 [page 72] Lily-of-the-valley
P. Prusinkiewicz, J. Hanan (1987)

Figure 3.5 [page 74] Development of Capsella bursa-pastoris
P. Prusinkiewicz, A. Lindenmayer (1987)

Figure 3.6 [page 75] Apple twig
P. Prusinkiewicz, D. R. Fowler (1990)

This twig model was developed in one spring day, looking at a
real twig nearby. This time is indicative for most inflorescence
models shown.

Figure 3.11 [page 81] A mint
P. Prusinkiewicz (1988)

Figure 3.14 [page 84] Development of Lychnis coronaria
P. Prusinkiewicz, J. Hanan (1987)

Figure 3.17 [page 90] Development of Mycelis muralis
P. Prusinkiewicz, A. Lindenmayer (1987)

Figure 3.18 [page 91] A three-dimensional rendering of the Mycelis
models
P. Prusinkiewicz, J. Hanan (1987)

All internodes in the model are assumed to have the same length.
In reality, the internodes have different lengths, and the structure
is less crowded.

Figure 3.19 [page 92] Lilac inflorescences
P. Prusinkiewicz, J. Hanan, D. R. Fowler
(1990)
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Figure 3.21 [page 94] The Garden of L
P. Prusinkiewicz, F. D. Fracchia, J. Hanan,
D. R. Fowler (1988)

All plants were modeled with L-systems and rendered using the
IRIS firmware. Images corresponding to different viewing planes
(the background lilac twigs, the apple twig and the daisies) were
defocused separately using low-pass filters to simulate the depth
of field, then composited with a focused image of lilac inflores-
cences. The sky was generated using a fractal algorithm.

Figure 3.23 [page 96] Wild carrot
P. Prusinkiewicz (1988)

Figure 4.3 [page 102] Close-up of a daisy capitulum
D. R. Fowler (1988)

The petals and florets were modeled as Bézier surfaces.

Figure 4.4 [page 102] Domestic sunflower head
D. R. Fowler, P. Prusinkiewicz (1989)

Figure 4.5 [page 105] Sunflower field
D. R. Fowler, N. Fuller, J. Hanan, A. Snider
(1990)

This image contains approximately 400 plants, each with 15 flow-
ers. A flower has 21 petals and 300 seeds, modeled using 600 tri-
angles and 400 triangles respectively. Counting leaves and buds,
the entire scene contains about 800,000,000 triangles. The image
was ray-traced with adaptive supersampling on a grid of 1024 x
768 pixels using 45 hours of CPU time on a MIPS M-120 com-
puter.

Figure 4.6 [page 106] Zinnias
D. R. Fowler, P. Prusinkiewicz, J. Hanan,
N. Fuller (1990)

The vase was modeled using L.E.G.O. and rendered with a pro-
cedural texture. The scene was illuminated by one extended light
source.
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Figure 4.7 [page 106] Close-up of zinnias
D. R. Fowler, P. Prusinkiewicz, A. Snider
(1990)

This scene was rendered using distributed ray-tracing to simu-
late the depth field.

Figure 4.8 [page 108] Water-lily
D. R. Fowler, J. Hanan (1990)

Figure 4.9 [page 108] Lily pond
D. R. Fowler, J. Hanan, P. Prusinkiewicz,
N. Fuller (1990)

The wavelets on the water surface were obtained using bump-
mapping with a procedurally defined texture.

Figure 4.10 [page 109] Roses
D. R. Fowler, J. Hanan, P. Prusinkiewicz
(1990)

Distributed ray-tracing with one extended light source was used
to simulate depth of field and create fuzzy shadows.

Figure 4.11 [page 111] Parastichies on a cylinder
D. R. Fowler (1990)

Figure 4.15 [page 116] Pineapples
D. R. Fowler, A. Snider (1990)

The image incorporates a physically-based model of a tablecloth
approximated as an array of masses connected by springs and
placed in a gravitational field. The scene is illuminated by three
extended light sources.

Figure 4.16 [page 117] Spruce cones
D. R. Fowler, J. Hanan (1990)

Figure 4.17 [page 117] Carex laevigata
J. Hanan, P. Prusinkiewicz (1989)

The entire plant, including the leaves, was modeled using para-
metric L-systems.
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Figure 5.2 [page 121] Maraldi figure
Ned Greene, NYIT (1984)

The shapes of leaves, calyxes and petals were defined using a paint
program, by interpreting gray levels as height. Painted textures
were mapped onto the surfaces of leaves and calyxes. Smooth
gradation of color across the petals was obtained by assigning
colors to the vertices of the polygon meshes representing flowers,
then interpolating colors across polygons using Gouraud shading.
The vines were rendered with bump-mapping, using a digitized
image of real bark.

Figure 5.3 [page 121] The fern
P. Prusinkiewicz (1986)

Figure 5.7 [page 125] A rose in a vase
D. R. Fowler, J. Hanan, P. Prusinkiewicz
(1990)

Petals and thorns are Bézier surfaces incorporated into a rose
model expressed using L-systems. The vase was modeled as a
surface of revolution.

Figure 6.3 [page 141] Development of Anabaena catenula
P. Prusinkiewicz, F. D. Fracchia (1989)

Each developmental stage is plotted in one scan line.

Figure 7.13 [page 161] Simulated development of Microsorium
linguaeforme
F. D. Fracchia, P. Prusinkiewicz,
M. J. M. de Boer (1989)

Cells are represented as polygons, rendered using the IRIS firmware.
The development can be visualized directly on the screen of an
IRIS 4D/20 workstation without resorting to single-frame anima-
tion techniques.

Figure 7.14 [page 161] Microphotograph of Microsorium linguaeforme
M. J. M. de Boer, University of Utrecht

Figure 7.16 [page 163] Simulated development of Dryopteris
thelypteris
F. D. Fracchia, P. Prusinkiewicz,
M. J. M. de Boer (1989)
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Figure 7.19 [page 169] Developmental sequence of Patella vulgata
F. D. Fracchia, A. Lindenmayer,
M. J. M. de Boer (1989)

Cells are represented as spheres. Intersections of spheres inside
the modeled embryo are ignored, since they do not affect the
ray-traced images.

Figure 7.20 [page 169] An electron microscope image of Patella
vulgata
W. J. Dictus, University of Utrecht

Figure 8.4 [page 180] Fern dune
P. Prusinkiewicz, D. Hepting (1989)

The shape of the leaf has been captured using a controlled iter-
ated function system. A continuous escape-time function defines
point altitudes, resulting in a surrealistic incorporation of a leaf
into the landscape.

Figure 8.9 [page 186] Carrot leaf
D. Hepting, P. Prusinkiewicz (1989)

The leaf shape has been modeled using a controlled iterated func-
tion system. The scene consists of a set of spheres, with the radius
equal to the distance to the leaf. The image was rendered using
ray-tracing.

Figure E.1 [page 191] Water-lilies
D. R. Fowler, J. Hanan, P. Prusinkiewicz,
N. Fuller (1990)

A scene inspired by Water-lilies pool - Harmony in green by
Claude Monet (1899). All trees and water-lilies were modeled us-
ing L-systems. The willow twigs bend downwards due to a strong
tropism effect, simulating gravity. The bridge was modeled using
L.E.G.O. The sky is a sphere with a procedural texture. The
entire scene was ray-traced, then the resulting image was repre-
sented as a set of small circles, with the colors close but not equal
to the average of pixel colors underneath. This last operation was
aimed at creating the appearance of an impressionistic painting.

Figure A.4 [page 200] Virtual lab
L. Mercer, D. R. Fowler (1990)





Turtle interpretation of
symbols

Symbol Interpretation Page

F Move forward and draw a line. 7, 46

f Move forward without drawing a line. 7, 46

+ Turn left. 7, 19, 46

− Turn right. 7, 19

∧ Pitch up. 19, 46

& Pitch down. 19, 46

\ Roll left. 19, 46

/ Roll right. 19, 46

| Turn around. 19, 46

$ Rotate the turtle to vertical. 57

[ Start a branch. 24

] Complete a branch. 24

{ Start a polygon. 120, 127

G Move forward and draw a line. Do not record a vertex. 122

. Record a vertex in the current polygon. 122, 127

} Complete a polygon. 120, 127

∼ Incorporate a predefined surface. 119

! Decrement the diameter of segments. 26, 57
′ Increment the current color index. 26

% Cut off the remainder of the branch. 73
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Cacao-Thé, 26(2):77–96, 1982. Quatrième partie, Café-Cacao-
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menová and J. Kelmen, editors, Trends, techniques and problems
in theoretical computer science, Lecture Notes in Computer Sci-
ence 281, pages 138–168. Springer-Verlag, Berlin, 1987.

[89] A. Lindenmayer and P. Prusinkiewicz. Developmental models
of multicellular organisms: A computer graphics perspective. In
C. Langton, editor, Artificial Life: Proceedings of an Interdisci-
plinary Workshop on the Synthesis and Simulation of Living Sys-
tems held September, 1987, in Los Alamos, New Mexico, pages
221–249. Addison-Wesley, Redwood City, 1989.

[90] A. Lindenmayer and G. Rozenberg, editors. Automata, languages,
development. North-Holland, Amsterdam, 1976.

[91] A. Lindenmayer and G. Rozenberg. Parallel generation of maps:
Developmental systems for cell layers. In V. Claus, H. Ehrig, and
G. Rozenberg, editors, Graph grammars and their application to
computer science; First International Workshop, Lecture Notes
in Computer Science 73, pages 301–316. Springer-Verlag, Berlin,
1979.

[92] J. Lück, A. Lindenmayer, and H. B. Lück. Models for cell
tetrads and clones in meristematic cell layers. Botanical Gazette,
149:1127–141, 1988.

[93] J. Lück and H. B. Lück. Generation of 3-dimensional plant bod-
ies by double wall map and stereomap systems. In H. Ehrig,
M. Nagl, and G. Rozenberg, editors, Graph Grammars and Their
Application to Computer Science; Second International Work-
shop, Lecture Notes in Computer Science 153, pages 219–231.
Springer-Verlag, Berlin, 1983.



Bibliography 219

[94] N. Macdonald. Trees and networks in biological models. J. Wiley
& Sons, New York, 1983.

[95] B. B. Mandelbrot. The fractal geometry of nature. W. H. Free-
man, San Francisco, 1982.

[96] D. M. McKenna. SquaRecurves, E-tours, eddies and frenzies:
Basic families of Peano curves on the square grid. In Proceed-
ings of the Eugene Strens Memorial Conference on Recreational
Mathematics and its History, 1989. To appear.

[97] H. Meinhardt. Models of biological pattern formation. Academic
Press, New York, 1982.

[98] L. Mercer, P. Prusinkiewicz, and J. Hanan. The concept and de-
sign of a virtual laboratory. In Proceedings of Graphics Interface
’90, pages 149–155. CIPS, 1990.

[99] G. J. Mitchison and Michael Wilcox. Rules governing cell division
in Anabaena. Nature, 239:110–111, 1972.

[100] D. Müller-Doblies and U. Müller-Doblies. Cautious improvement
of a descriptive terminology of inflorescences. Monocot Newsletter
4, 1987.

[101] F. K. Musgrave, C. E. Kolb, and R. S. Mace. The synthesis
and rendering of eroded fractal terrains. Proceedings of SIG-
GRAPH ’89 (Boston, Mass., July 31-August 4, 1989), in Com-
puter Graphics 23,4 (August 1989), pages 41–50, ACM SIG-
GRAPH, New York, 1989.

[102] A. Nakamura, A. Lindenmayer, and K. Aizawa. Some systems
for map generation. In G. Rozenberg and A. Salomaa, editors,
The Book of L, pages 323–332. Springer-Verlag, Berlin, 1986.

[103] P. Naur et al. Report on the algorithmic language ALGOL 60.
Communications of the ACM, 3(5):299–314, 1960. Revised in
Comm. ACM 6(1):1-17.

[104] T. Nelson. Computer lib and dream machines. Self-published,
1980.

[105] P. Oppenheimer. Real time design and animation of fractal plants
and trees. Computer Graphics, 20(4):55–64, 1986.

[106] G. Peano. Sur une courbe, qui remplit tout une aire plaine. Math.
Annln., 36:157–160, 1890. Translated in G. Peano, Selected works
of Giuseppe Peano, H. C. Kennedy, editor, pages 143–149, Uni-
versity of Toronto Press, Toronto, 1973.



220 Bibliography

[107] H. Peitgen and D. Saupe, editors. The science of fractal images.
Springer-Verlag, New York, 1988.

[108] F. P. Preparata and R. T. Yeh. Introduction to Discrete Struc-
tures. Addison-Wesley, Reading, Massachusetts, 1973.

[109] P. Prusinkiewicz. Graphical applications of L-systems. In Pro-
ceedings of Graphics Interface ’86 — Vision Interface ’86, pages
247–253. CIPS, 1986.

[110] P. Prusinkiewicz. Score generation with L-systems. In Proceedings
of the International Computer Music Conference ’86, pages 455–
457, 1986.

[111] P. Prusinkiewicz. Applications of L-systems to computer imagery.
In H. Ehrig, M. Nagl, A. Rosenfeld, and G. Rozenberg, editors,
Graph grammars and their application to computer science; Third
International Workshop, pages 534–548. Springer-Verlag, Berlin,
1987. Lecture Notes in Computer Science 291.

[112] P. Prusinkiewicz and J. Hanan. Lindenmayer systems, frac-
tals, and plants, volume 79 of Lecture Notes in Biomathematics.
Springer-Verlag, Berlin, 1989.

[113] P. Prusinkiewicz and J. Hanan. Visualization of botanical struc-
tures and processes using parametric L-systems. In D. Thalmann,
editor, Scientific Visualization and Graphics Simulation, pages
183–201. J. Wiley & Sons, 1990.

[114] P. Prusinkiewicz and K. Krithivasan. Algorithmic generation of
South Indian folk art patterns. In Proceedings of the Interna-
tional Conference on Computer Graphics ICONCG ’88, Singa-
pore, 1988.

[115] P. Prusinkiewicz, K. Krithivasan, and M. G. Vijayanarayana. Ap-
plication of L-systems to algorithmic generation of South Indian
folk art patterns and karnatic music. In R. Narasimhan, editor,
A perspective in theoretical computer science — commemorative
volume for Gift Siromoney, pages 229–247. World Scientific, Sin-
gapore, 1989. Series in Computer Science Vol. 16.

[116] P. Prusinkiewicz, A. Lindenmayer, and F. D. Fracchia. Synthesis
of space-filling curves on the square grid. To appear in Proceedings
of FRACTAL ’90, the 1st IFIP conference on fractals, Lisbon,
Portugal, June 6-8, 1990.

[117] P. Prusinkiewicz, A. Lindenmayer, and J. Hanan. Developmen-
tal models of herbaceous plants for computer imagery purposes.
Proceedings of SIGGRAPH ’88 (Atlanta, Georgia, August 1-5,
1988), in Computer Graphics 22,4 (August 1988), pages 141–150,
ACM SIGGRAPH, New York, 1988.



Bibliography 221

[118] P. Prusinkiewicz and G. Sandness. Koch curves as attractors and
repellers. IEEE Computer Graphics and Applications, 8(6):26–40,
1988.

[119] W. T. Reeves and R. Blau. Approximate and probabilistic al-
gorithms for shading and rendering structured particle systems.
Proceedings of SIGGRAPH ’85 (San Francisco, California, July
22-26, 1985) in Computer Graphics, 19, 3 (July 1985), pages 313–
322, ACM SIGGRAPH, New York, 1985.

[120] W. R. Remphrey, B. R. Neal, and T. A. Steeves. The morphology
and growth of Arctostaphylos uva-ursi (bearberry), parts i and ii.
Canadian Journal of Botany, 61(9):2430–2458, 1983.

[121] W. R. Remphrey and G. R. Powell. Crown architecture of Larix
laricina saplings: Quantitative analysis and modelling of (non-
sylleptic) order 1 branching in relation to development of the
main stem. Canadian Journal of Botany, 62(9):1904–1915, 1984.

[122] W. R. Remphrey and G. R. Powell. Crown architecture of Larix
laricina saplings: Sylleptic branching on the main stem. Cana-
dian Journal of Botany, 63(7):1296–1302, 1985.

[123] L. H. Reuter. Rendering and magnification of fractals using in-
terated function systems. PhD thesis, Georgia Institute of Tech-
nology, 1987.

[124] J. N. Ridley. Computer simulation of contact pressure in capitula.
Journal of Theoretical Biology, 95:1–11, 1982.

[125] J. N. Ridley. Packing efficiency in sunflower heads. Mathematical
Biosciences, 58:129–139, 1982.

[126] D. F. Robinson. A notation for the growth of inflorescences. New
Phytologist, 103:587–596, 1986.

[127] G. Rozenberg and A. Salomaa. The mathematical theory of L-
systems. Academic Press, New York, 1980.

[128] A. Salomaa. Formal languages. Academic Press, New York, 1973.

[129] F. W. Sears, M. W. Zemansky, and H. D. Young. College physics.
Addison-Wesley Publ. Co., Reading, 6th edition, 1985.

[130] M. Shebell. Modeling branching plants using attribute L-systems.
Master’s thesis, Worcester Polytechnic Institute, 1986.

[131] P. L. J. Siero, G. Rozenberg, and A. Lindenmayer. Cell division
patterns: Syntactical description and implementation. Computer
Graphics and Image Processing, 18:329–346, 1982.



222 Bibliography
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